Determining the Best-Fit FPGA for a Space Mission: An Analysis of Cost, SEU Sensitivity, and Reliability

Melanie Berg, Ken LaBel

MEI Technologies Incorporated
NASA/GSFC Radiation Effects and Analysis Group

Sponsored by:
- NASA Electronic Parts and Packaging (EPPP) Program
- Defense Threat Reduction Agency under ID#06-4012

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA

Outline

- FPGA selection for flight missions
- Differentiating FPGAs
- Cost Analysis
- SEE Analysis
- Expanding Evaluation Criteria
 - Limitations of Bit Error Rate Calculators
 - SET Performance Degradation Metric
 - Availability Calculation
- Applying Evaluation criteria to the selection process

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA
Flight Project FPGA Selection

- Primary Considerations
 - Criticality
 - Number of Mega-Operations Per Second (MOPS)
 - Internal clock frequency
 - Number of operations performed at each clock edge
 - Area/Power restraints
 - Cost

- Analysis
 - SEE and Reliability testing
 - Integrating traditional SEE metrics with obtainable MOPs

FPGA Characterization:
Understanding the Differences to Develop a Comprehensive Analysis
General FPGA Architecture

Configuration: A Major Difference between FPGA Classes

- FPGAs contain groups of preexisting logic:
 HARDWARE

- Configuration:
 - Arrangement of pre-existing logic
 - Defines Functionality
 - Defines Connectivity

Common types
- One time configurable
- Re-configurable

Configuration Types
- One Time Configurable
- Re-Configurable
 - Antifuse
 - SRAM-Based
 - FLASH-Based
Antifuse FPGA Devices (Actel and Aeroflex)

Pros:
- Most common FPGA devices utilized for space missions - **Heritage**
- Configuration is fused (no transistors) and is thus "HARDEND" – not affected by SEUs
- Logic has embedded mitigation at each DFF (either TMR or DICE) – eases the design phase

Cons:
- One time programmable – can complicate the design/debug phase
- Very expensive

SRAM-Based FPGA’s

Pros:
- The ability to reconfigure a function while in-flight is of great advantage to many missions
- Device is Less expensive
- Easier to debug/correct (with no mitigation)
- Performance (MOPS):
 - Speed
 - Increased User Device Resources

Cons:
- Configuration is SRAM-based – increased sensitivity to radiation (vs. antifuse)
- Additional design complexity necessary for mitigation
- Additional hardware necessary for (re)configuration
What Xilinx Does Well: Frequency and Number of Mega-Operations per Second: \[\text{NMOPS} = f^*k \]

\[T_{\text{clock period}} = \frac{1}{f} \]

K: Resource and speed Dependent

Xilinx Virtex Series can supply a high frequency (f) with a large K value. NMOPS is very large compared to many other FPGA manufacturers.

Xilinx FPGAs in Space: Configuration and Scrubbing

Minimal Requirements for Flight:
- Full Reconfigure
- To increase availability: use Scrubber
- Configuration Manager can be combined with external scrubber

Extra circuitry is required regardless in order to configure/re-configure.
Criticality and Xilinx: Proposed Solution: Full TMR

- Triple the design within the Xilinx FPGA device (including I/O)
- User implemented (can lengthen design cycle)
- Will consume \(\gg 3x \) of original area
- Difficult to implement multiple clock domains
- Use an external FPGA device to scrub the configuration memory

Cost Analysis

- Missions do not generally require a large number of replicated FPGA devices
- Cost of a mission will not rely on FPGA device cost
- Design cycle can grossly affect cost:
 - Complexity of design architecture:
 - One FPGA can not handle required number of operations per second.
 - Chosen FPGA can not handle availability specifications – additional/complex mitigation is required.
 - Complexity of verification
 - Complexity of Board
 - Poor choice in emulation or engineering models
- Choose the FPGA that best meets requirements!
Determining Reliability and Availability: Radiation Testing and SEE Analysis

Investigating Radiation Effects (SEE Analysis)

- Determine Bit sensitivity
 - Flip Flops
 - Configuration (SRAM based technology)
- Availability analysis
 - Given a function to implement – what is the percentage of time the output is correct vs. incorrect
 - Determine an availability rating that considers
 - Operational Frequency
 - Fluence
 - Repair time
 - Burst time
What Function to Implement for Testing?

Simple Architecture
- No functional Masking
- Easy to base-line across FPGAs
- Reduces Test time
- Increases state space coverage

Complex Architecture
- Functional Masking
- Minimal state space coverage (short test runs - reset upon error)
- Only significant for specific design

Actual flight Architecture
- Usually not available at test time
- Can be very expensive to test
- Can not cover a significant amount of state space while testing
- Usually have to start from scratch at every error event

Simple Architecture: Windowed Shift Register

N LEVELS OF COMBINATORIAL LOGIC BETWEEN DFFs
N = 0, 4, 8, and 20

Possible Transients
Calculating Error Cross Sections

Traditional error calculation

\[\sum \frac{\text{Events}}{\text{Fluence}} \]

Error calculation: Bursts within data

\[\sum \frac{\text{Events}}{\text{TF} - (\text{TB} \times \text{FLUX})} \]

- Analysis of event frequency
- Cross-section fed to error rate calculator: based off of a cumulative distribution probability function (P(T>t))
- We are not analyzing how long we are in error

Clock Frequency Effects 54MeV·cm²/mg:

Aeroflex:

σ decreases as Frequency increases

Most significant with larger chains of combinatorial logic and data pattern fluctuation

Actel:

σ decreases as Frequency decreases

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA
Error Cross-Section Results Prove for Antifuse Devices...

- Static testing is not sufficient
- Static simulation is not sufficient
- Assumptions of frequency response can not automatically be made
 - Actel produced expected (traditional) response
 - Aeroflex – unexpected... combinatorial logic acts as transient filter
Scrubbing Facts:

- Most SRAM based FPGA faults are believed to occur in configuration memory.
- Correction of fault can only be accomplished by:
 - Reconfiguration – can be costly (time wise)
 - Scrubbing
- Reconfiguration brings down the system
- While scrubbing, the system is fully operational.
- Scrubbing does not reduce the probability of an upset occurring.
- Frequency of scrubbing can reduce the amount of time the upset is present in the configuration memory.
- Unable to scrub everything.
- **Warning:** High Current spikes observed by Xilinx consortium:
 - Observed @ fluence = 1×10^8 (1e05 < flux < 1e06): FLUX is extremely accelerated for scrubbing mitigation technique.
 - Readback+CRC is performed at every frame – different than blind-scrubber of REAG.
 - REAG did not observe event... tests performed with flux <1e03.

Non-TMR Windowed Architecture

N levels of logic between DFFs... 2 strings each: $N = 0, 8, \text{and } 20$.

Upon Error:

Long string of '0's or '1's:

REAG uses alternating data inputs to achieve accurate cross-sections.

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA.
Error Cross Section Calculation:
Dealing with Bursts

\[\sigma = \frac{NE}{TFL - (TB \times FLUX)} \]

- Cross-section based off of functional upsets (shift register)
- Simultaneous multiple errors exist in shift register
- Count burst as one error event
- Burst can potentially mask faults
 - Could have a much higher frequency of events
 - Just masked by burst
 - Will be further investigated by fault injection

Can not make direct comparison with Antifuse device bit error rate

Evaluation Criteria and Device Selection
Limitations with Error Cross Sections as sole Evaluation Criteria

Frequency Effect Analysis and Successful Operations per second:

DUTA: @ 100MHz over 1E07 fluence: no bursts 10 errors
DUTB: @ 50MHz over 1E07 fluence: no bursts 5 errors

\[\sigma_A = 2^* \sigma_B; \] Assumes constant error rate per frequency

Common Interpretation: Cross Section increases with Frequency – Decrease Clock Rate for Critical Missions

- However, B has to run twice as long as A to complete the same number of successful operations.
- Illustrates that per number of completed operations, each has the same probability to accumulate an equivalent number of errors

In this case: Slower Clock does not influence errors per successful operation

Limitations with Error Cross Sections as sole Evaluation Criteria (Continued)

- Burst Analysis:
 - Cross section probability calculation is based off of Event frequency (not event duration).
 - Cross section does not consider burst or repair time (availability)
Bit Error Rate Misconceptions:

- Given a Bit Error rate of 5e-08, what does this mean???

Antifuse

- Bit Error Rate is based on DFFs
- Number of DFFs will be from a few hundred to 10's of thousands
- Comes out to about 1 error every 10,000 days or better

SRAM

- Generally pertains to configuration bit rate
- If for example 1e7 bits can affect the design upon upset – then can have 1 upset every 2 days

SET Performance Metric:

- Given a failure rate (worse-case is bit-error rate): MTTF
- Determines required operational frequency and necessary parallelism

\[
f \times k = \frac{N_{\text{Target}}}{MTTF} \left[1.0 - \frac{1.0}{\text{Acc}} \left(\sum_{i=1}^{n} \frac{EC_i}{Cyc_{\text{rad}}} \right) \right]
\]

- NOP_{\text{Target}}: Targeted Number of operations
- F * k: operational frequency * implemented number of operations (each cycle)
- EC_i: Number of clock cycles of error per event i
- Cyc_{\text{rad}}: Total number of operational clock cycles during irradiation
- Acc: Acceleration Factor

To be presented at Microelectronics Reliability & Qualification Workshop (MRQW), Dec. 4-5, 2007, Manhattan Beach, CA
Availability Calculation using Radiation Data

\[A = \frac{MTTF}{MTTR + MTTF} \]

A = 1 is a perfect system

A: Steady State Availability

<table>
<thead>
<tr>
<th>LET = 8MeV·cm²/mg</th>
<th>MTTR</th>
<th>MTTF</th>
<th>A steady State</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTAX @ 150MHz</td>
<td>6.67*10⁻²</td>
<td>3.6*10⁻² AccR</td>
<td>(3.610⁻² AccR) / (6.6710⁻² - 3.6*10⁻² AccR)</td>
</tr>
<tr>
<td>Aeroflex @ 100MHz</td>
<td>10⁻³</td>
<td>6.0*10⁻³ AccA</td>
<td>(6.010⁻³ AccA) / (10⁻³ - 6.010⁻³ AccA)</td>
</tr>
<tr>
<td>Xilinx @ 100MHz</td>
<td>1.6*10⁻²</td>
<td>41 AccX</td>
<td>(41 AccX) / (1.6*10⁻² - 41 AccX)</td>
</tr>
</tbody>
</table>

Mission Device Selection

- Xilinx showed a relatively low availability rating at 100MHz.
 - If used at full rate, will achieve much higher operations per second.
 - Higher MOPS can include scheduled downtime and may be a great fit.
- Criticality and reliability play a major role in device selection.
 - Missions have traditionally chosen antifuse devices for critical specifications.
 - Actel has been in the forefront.
 - Aeroflex is very promising with its combinatorial transient filtering.
 - For less critical functionality, SRAM devices are being heavily investigated.
Embedded vs. User Implemented TMR

<table>
<thead>
<tr>
<th></th>
<th>Clock Speeds</th>
<th>Contains Mitigation</th>
<th># FLIP FLOPS</th>
<th># User TMR FLIP FLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT2</td>
<td><10 MHz</td>
<td>NO</td>
<td><400 to 1000</td>
<td><400 to 1000</td>
</tr>
<tr>
<td>RTX5X</td>
<td>< 50 MHz</td>
<td>Yes</td>
<td><2000 to 4000</td>
<td><2000 to 4000</td>
</tr>
<tr>
<td>RTX5S</td>
<td><200 MHz</td>
<td>Yes</td>
<td><21,000</td>
<td><21,000</td>
</tr>
<tr>
<td>XILINX V4 - Lx25</td>
<td>< 400 MHz</td>
<td>NO</td>
<td><22,000</td>
<td><5,000</td>
</tr>
<tr>
<td>XILINX V4 - Fx60</td>
<td>< 400 MHz</td>
<td>NO</td>
<td><52,000</td>
<td><10,000</td>
</tr>
</tbody>
</table>

Not datasheet clock speeds — actual design clock speeds

Add XTM to Xilinx
- Observed area increase @ 5x and 6x
- I/O speed may be jeopardized (Simultaneously Switching Signals)
- Internal operational speed can be decreased

Understand Requirements – Select Wisely

If criticality (reliability and availability) is essential:
- Antifuse FPGAs provide safer solutions
- Antifuse FPGAs can shorten the design cycle — More Cost Effective
 - Verification is eased (mitigation is embedded and does not have to be verified)
 - Board design is simplified — do not have to triple I/O (signal integrity requirements)
 - Multiple clock domains are easier to implement

If MOPS is essential
- SRAM based design can ease the design cycle (without additional TMR)
 - Available IP cores
 - Re-programmability
 - Number of high speed available resources
 - SRAM based FPGA currently provide the fastest internal clocking (internal DLL + multiple embedded Power PCs)
Summary

- Each FPGA type has its advantages: SEE analysis must take this into account for a comprehensive comparison.
- Sensitivity calculations are provided to missions to assist in the selection process.
 - Test to determine additional mitigation schemes required per FPGA
 - Bit Error calculations
 - Availability and degradation analysis
- Formulae have been presented:
 - Adjust Bit error calculations due to long bursts
 - SET Performance degradation Metric
 - Availability
- Mission Cost and design cycle are directly related.
 - Keep designs simple
 - Each FPGA has its advantages
 - Choose the best fit FPGA for your mission specifications

Thank You Questions?