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Many software systems are evolving complex system of systems (SoS) for which inter-
system communication is mission-critical. Evidence indicates that transmission failures and 
performance issues are not uncommon occurrences. In a NASA-supported Software 
Assurance Research Program (SARP) project, we are researching a new approach 
addressing such problems. In this paper, we are presenting an approach for analyzing inter-
system communications with the goal to uncover both transmission errors and performance 
problems. Our approach consists of a visualization and an evaluation component. While the 
visualization of the observed communication aims to facilitate understanding, the evaluation 
component automatically checks the conformance of an observed communication (actual) to 
a desired one (planned). The actual and the planned are represented as sequence diagrams. 
The evaluation algorithm checks the conformance of the actual to the planned diagram. We 
have applied our approach to the communication of aerospace systems and were successful 
in detecting and resolving even subtle and long existing transmission problems. 

 

I. Introduction 
ANY software systems are complex system of systems (SoS) for which inter-system communication is 
both mission-critical and error-prone. Software failures in the communication between the participating 
systems in a SoS, e.g. between Flight Software and the Ground System, can cripple system capabilities, 

cause loss of data, and lead to mission failure. Inter-system communication problems ideally would be detected 
before deployment, but current state-of-the-art technologies do not easily support their detection.  

 M 
An analysis of APL’s Common Ground System, the system analyzed in this paper, quickly identified 15 trouble 
reports related to problems with inter-system communication that had adverse mission impacts and for which there 
were no workarounds. Inter-system communication is conducted through system interfaces and is often the source of 
problems. One reason for such problems is that the different systems are often developed by different teams with 
different interpretations of interface specifications. Individual developers may occasionally attempt to build in 
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support to programmatically check that interface specifications are followed, but there is often no systematic way for 
architects or V&V teams to describe and check these interface specification rules in a consistent manner across a 
SoS. Previous efforts have analyzed static architectures [1] and have led to the development of a general 
understanding of dynamic architectures of small software systems [2], but they do not typically address the inter-
system communication problems APL has been facing.  

In a NASA-supported Software Assurance Research Program (SARP) project called Architecture Analysis of 
Evolving Complex Systems of Systems, we are researching a new approach that will explicitly address such 
problems by providing automated support to check system communication across a SoS. 

In previous papers, we described the background of this SARP project and the problems we are addressing. We also 
described aspects of the proposed solution, and some of the results from a study we conducted to determine the 
feasibility of the proposed solution by manually comparing planned communications with actual ones [5, 6]. In this 
paper, we describe some of the features of the automated approach and provide diagrams that show examples of the 
tool output that helped detect defects in the inter-system communications. 

III. Technology characteristics 
The technology that is developed as part of this project addresses problems related to interfaces and the 
communication profiles of systems that communicate at runtime. The technology allows the user to define and 
navigate the expected (a.k.a. planned, specified, desirable, ideal, baselined etc.) communication profile of a system 
as well as comparing it to the actual communication profile so that s/he may evaluate whether or not the system 
communication conforms to its specifications.  

Interface rules form the basis of the planned communication profile. These interface rules are derived from already 
existing interface specifications typically found in Interface Control Documents (ICDs). In these specifications, e.g. 
the order of calls and events, the size and format of data, as well as timing information are specified. We are using 
sequence diagrams to describe the planned order of messages. Assertions are used describe other aspects of the 
communication profiles. We collect data from the system during run-time and automatically compare the planned 
dynamic profile with run-time data in order to detect deviations between the two indicating potential problems.  

This functionality is provided as an extension to Fraunhofer’s SAVE tool [1], which visualizes and compares the 
implemented software architecture (actual) with its planned architecture based on static analysis.  

We have implemented a prototype for visualizing the observed communications and for checking the conformance 
of that communication to a set of rules. It automatically annotates a sequence diagram with icons that signal 
deviations from the planned communication. The example diagrams in this paper were produced using that 
prototype.  

IV. The Common Ground System (CGS) 
The system analyzed in this paper is APL’s Common Ground System (CGS). All of APL's NASA missions use the 
CGS for spacecraft I&T and operations. CGS is currently supporting operations for three deep space missions:  
MESSENGER, STEREO, and New Horizons. Flight software, scientific data processing software, and ground 
equipment software interface with CGS and depend on its services. CGS [4] consists of 83 different systems 
(applications). These applications are developed, compiled, and launched independently from each other, and 
participate in a reusable pipe-and-filter architecture established during run-time. Figure 1 illustrates some of CGS 
applications and how they are related to each other.  



 

Client 

Server 

Figure 1 – ArchiveServer and EngDump in Common Ground’s pipe and-filter architecture 

 

In this paper, we focus our examination on two applications that are representative of the Common Ground software 
architecture and which belong to the Assessment sub-system. The Archive Server, which is an application that 
serves selected telemetry packets from the archive, and the Engineering Dump, which is one of several clients of the 
archive server that all extract selected telemetry data from the archived packets, converts the raw telemetry data into 
engineering units for further analysis.  

Other teams often develop Archive Server clients and since there is little or no communication between the different 
teams, interface problems are introduced. APL conducts integration testing to a large extent, but problems still occur 
in operations because of incorrect use of communication protocols. Communication issues often remain in the 
system for a long time as they are subtle and difficult to detect. 

There are different types of communication rules systems must follow and if violated might lead to transmission 
problems. We have conducted an analysis of existing ICD’s of several protocols and discussed communication 
problems with CGS architects to identify the kind of rules that need to be addressed by our evaluation approach. As 
a result of this process we distinguish the follow rule types: 

• Message sequencing 

• Message content 

• Message timing 

Systems interact by sending a well-defined sequence of messages. Problems occur when systems do not follow that 
sequence and send unexpected messages or fail to send a certain message. If one systems sends formulates a request 
to another system, it expects the data that is sent in response to conform to the criteria specified in the request. Such 
expectations can be expressed in assertions. Lastly, the messages must adhere to timing rules. This is necessary in 
order to ensure that the system operates in a time efficient manner and to assert whether the systems adhered to pre-
defined time-outs.  

V. Implementation 
We have implemented a prototype for visualizing captured communication traces and for automatically evaluating 
the conformance of that communication to sequencing and content rules. We are planning to extend our approach by 
adding algorithms for timing evaluation in the future. The prototype visualizes an actual communication in a 
sequence diagram that displays not only the sequence of messages but also information about the message contents 
and temporal properties. The sequence diagram representing the actual communication can then be compared to 
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another similar diagram representing the planned communication behavior. We have implemented a set of 
algorithms to check the conformance of the message sequence to the sequencing rules and to evaluate whether the 
message content adheres to some pre-defined constraints. These constraints are specified as assertions in the planned 
sequence diagram. 

The evaluation components takes as input the planned sequence diagram and the actual sequence with its sequencing 
and content information. During evaluation, it annotates each message in the diagram with symbols indicating the 
kind of violation that occurred or if no violation was detected. In particular, the evaluation produces four different 
annotations: 

•  No error was detected 

•  An extra message was detected 

•  A missing message was detected 

•  A violation of a content rule was detected 

We believe that producing sequence diagram annotations is more desirable than a list of error reports since (1) the 
user can quickly identify the kind of error that occurred at a certain point and (2) in which context that error was 
detected. The context here refers to the point in the protocol, i.e. the communication behavior before and after the 
error has occurred. 

 

VI. The Study 
We studied whether our proposed solution would be feasible for detecting problems stemming from deviations from 
interface control documents. More specifically, we studied whether it would be possible to compare a planned 
sequence diagram with actual sequences in order to detect such deviations. We were especially interested in 
identifying different kinds of communication problems, for example in terms of how much modeling would be 
necessary to detect them. Software development teams often lacks time and resources and if such modeling requires 
too much effort, chances are that a new technology that relies on such modeling will never be used.  

The study was conducted in the following way. 

(1) The APL team produced a sequence diagram that specifies the planned communication between the server and 
the client. This sequence diagram was based on information provided in the ICD. See Figure 2 and 5. 

(2) The APL team captured dynamic data from a correct communication between server and the client. The 
communication was correct in that sense that it matches the planned sequence diagram, see Figure 3. 

(3) The FC-MD team developed a parser based on the ICD and the dynamic data provided by APL. The parser 
reads the dynamic data and outputs the messages that were sent between the two applications. For each 
message, the timestamp, the message type, and the message content were extracted.  

(4) Once it was determined that the parser worked correctly, the APL team produced a set of three communication 
sequences that each was not compliant with the planned sequence in one of the following ways: 1. There were 
missing messages, 2) there were extra messages, or 3) there were messages whose parameter values were 
inconsistent with the specification. The defects were specified by the APL team as well as the actual and 
correct system behavior. See Figure 4, 6, and 7. 

(5) The FC-MD team imported the sequences into SAVE and used the new SAVE prototype extension that 
automatically compared the planned sequence diagram to each of the actual sequence diagrams. 

(6) Deviations between the planned and the actual sequences were analyzed  and reported to the APL team. 
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(7) The APL team determined whether the detected deviations were true or false. 

(8) The APL team and the FC-MD team discussed the feasibility of the proposed approach and potential 
improvements to make it useable in a “live” situation at APL. 

The next subsections will illustrate the approach in four sequence diagrams. First, the specification will be 
presented, and then the evaluation and analysis results are discussed. 

A. Specification: The protocol as an abstract sequence diagram 

The clients and the server communicate using a protocol that specifies four different types of messages: 

(1) The client defines a set of filters that together specifies the type of data that it requests the server to return. 
Examples of filters are: Type of data, e.g. STP or TP, and Time range, specified by start time and stop time. 
The filters from the client to the server can be sent in arbitrary order. 

(2) When the client has specified, using filters, what data to download from the server, it sends a BeginPlayBack 
command to the server. Once this command has been issued, the client is not expected to send more messages. 

(3) When the BeginPlayBack message has been received by the server, the server starts sending data messages. 
Each data message must match the filter specification received earlier. For example, the type of each data 
message must be as specified and the time stamp of each message must fall within the specified time range. 

(4) When there are no more messages, the server sends an End Of Transmission (EOT) message to the client 
signaling that the data transmission is complete; thereafter the communication link is closed. 

Since the goal is to develop a modeling and evaluation method that requires limited effort, we started by modeling 
the protocol using an abstract sequence diagrams without as little detail as possible, see Figure 2. This model models 
the facts that there might be any number of filters followed by one BeginPlayback message, and that there might be 
any number of data messages followed by one EOT message. Thus, this abstract model does not provide any 
information about the type of filters or data messages that we expect to occur. 

B. Evaluation based on the high-level sequence diagram 
 
The next step was to evaluate sequences based on the planned sequence diagram. We started by applying it to the 
first sequence that we received. This sequence is expected to be correct, i.e. we expected it to match the specification 
without any extra or missing messages. The evaluation result is provided in Figure 3. As one can see in that figure, 
the final message EOT appears to be missing from the actual sequence. This is surprising because this sequence was 
supposed to be correct. The APL team analyzed the original ‘nominal case’ data and even re-ran the test example to 
verify that everything was correct. Still, it was difficult to understand why the EOT is not being sent from the 
archive server nor how the client knows when to close the socket. A missing EOT can be a significant problem 
because clients are expected to close the socket to the server once they have received all the requested data, as 
indicated by the EOT message.  If the EOT message is not being used for its intended purpose, clients may be 
employing some other means of recognizing that all the resulting data has been received.  For example, they might 
check that the time stamp on the data is equal to or exceeds the stop time specified.  For a variety of reasons, 
including timestamp precision, multiple of packets from different paths and/or sources with the same timestamp, 
etc., this may lead to the client prematurely closing the socket and missing data subsequently to be returned by the 
server. During extended analysis, the APL team realized that the missing EOT message is actually not missing at all.  
Because the TCP packets, as reported by snoop (i.e. the network protocol analyzer we used to capture the data), can 
aggregate data, the EOT message actually does occur at the end of the last TCP packet from the server to the client 
(i.e., the server produced two write statements for the STP and EOT, but it ended up as one TCP packet).  This is 
perfectly legal, with Nagles algorithm enabled.  Our issue in the analysis was that we were treating each TCP packet 
as a message. This illustrates that our parsing algorithm has to be able to detect aggregated data situations.  
 



 
 
 
 

client server

Filter

BeginPlayback

loop

Data

EOT

loop

Close

Close

 

Figure 2 - Abstract sequence diagram 

 
 
 
 
 
 
In the next example, it was detected that a filter change/addition was sent from the client to the server after 
BeginPlayback was sent and while data from server to client was flowing, see Figure 4. This filter message is 
ignored by the server; in fact, it might not even get read off the socket. This might cause problems because if the 
client continues to write to the buffer without the server reading from it, the buffer will eventually be full. If the 
client blocks and is not multi-threaded, it will be stuck and may not ever read the data being sent by the server. 
There is no timeout on the connection so in such a case, the client might occupy the connection for a long time. In 
addition, the client might expect the ignored filter to be in effect and thus receives the wrong data.  
 

 
American Institute of Aeronautics and Astronautics 

092407 
 

6



 

 

 

 

 

Figure 3 - EOT is undetected 

 

 

 

Figure 4. An illegal extra filter is sent after 
BeginPlayback message has been sent. 
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C. Specification: The protocol as a detailed sequence diagram 
 

We proceeded by adding more information to the sequence diagram, see Figure 5. Two rules were modeled: 1) The 
rule that specifies that start time must be less than stop time, as well as 2) The rule that the data type of each of the 
received data messages must be the same as the specified type. We modeled these rules as assertions and added 
parameters to the messages. The parameters are used by the assertions and the assertions are evaluated for each 
message. Since we added more information to the model, we also needed to specify that the order between the 
different filters is not important. This is denoted by adding a star “*” in front of each filter. In addition, we needed to 
express the fact that there might be filters of other kinds than the ones we focus on. We express this by adding a 
general filter with stars as parameters. Since we needed to connect the data messages to the filter messages, we 
added a parameter Type. 

client server

*Filter(*=*)

BeginPlayback

Data(Type=[sentType])

EOT

Assertion
{strt<stop}

{recType==sentType} *Filter(STRT=[strt])

*Filter(STOP=[stop])

loop

loop

*Filter(TYPE=[recType])

Close

Close

 

Figure 5 - Detailed planned sequence diagram 
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Figure 6 - Start time occurs after Stop time. 

 

 

 

Figure 7. "STF" was requested "STP" was received. 
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e specified in the ‘STRT’ (start time) was after the ‘STOP’ (stop time). Unfortunately, 
e ICD does not allow for an indication from the server to the client that it has specified an invalid filter.  So the 

turned and process the incoming data according to that type. In fact, several clients, including Eng_Dump, 
are coded in this fashion and do not verify that the type returned and about to be processed is of the type requested.  
Obviously, processing data of the in t data to be generated or even client application 

The SARP project develops an approach for dynamic compliance checking and visualizes the results using extended 

deling may be used without 
low-level modeling and vice-versa, allowing the user full flexibility over of the amount of time and resources he/she 

g the actual communication and its evaluation 
might be different from the systems that were subject to this study. The potential impact might be an extension of 
our notation for specifying planned communication and the modifications of current evaluation algorithms. 
Furthermore, new challenges in visualizing the communication arise. 

D. Evaluation based on the detailed sequence diagram 
 
We evaluated the captured sequences by applying the detailed planned sequence diagram and matching it to the 
actual sequence.  We use a lightning symbol to indicate that the names of the messages are correct but that there is a 
mismatch between the parameters of the messages. Thus the lightning symbol in  
 
 
 
Figure 6 indicates that the tim
th
close() from the server, without an EOT message, is actually expected.  Thus, though not a nominal case, this case 
illustrates compliance to the protocol defined in the ICD. 
 
In the last example (Figure 10), it was detected that data messages of the wrong type were sent to the client. The root 
cause is actually that a bad filter is sent from the client to the server: TYPE:STF.  STF used to be a supported type, 
but no longer is. Old legacy clients might still request STF-data, if they have not updated to the new ICD.  Since 
STF is not a valid option, the server returns STPs, which is not expected.  In this case, the server simply ignored the 
invalid filter and used its default which is STP. The correct server behavior should have been to close the socket 
upon receiving the invalid filter. Dependent on how robustly the client was implemented, the fact the socket is not 
closed can be a significant problem because the client might assume that the same type of data that was requested 
will be re

correct type will cause incorrec
crashes. 

VII. Conclusions 

sequence diagrams. The approach has been implemented as an extension to the SAVE tool and was validated in a 
first pilot study for APL’s CGS. 

The results from the study show that problems in the communication between two systems can be detected by using 
sequence diagrams to model the planned or expected communication and by comparing the planned sequence to the 
actual sequence. The results also show that there are different kinds of problems and that they can be addressed by 
modeling the planned sequence using different level of details. Sequencing problems, that is, messages that occur 
unexpectedly or out of order, can be detected by using high level sequence diagrams without details. Content 
problems, that is, problems which are related to the content of messages rather than to the order of messages require 
a more detailed modeling approach. The suggested approach, which is based on assertions in combination with 
sequence diagrams, seems to be a feasible approach for this problem.  High-level mo

chooses to use the tool to detect such issues. The fact that only simple, standard modeling skills are necessary to 
become immediately productive with the proposed tool makes the approach appealing. 

In the future we are seeking to evaluate the applicability of this approach by applying it to other systems. Depending 
on the purpose and the constraints in which systems operate, retrievin
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Motivation

• Software systems are difficult to understand

• Distributed systems are even more difficult to understand

• Does the system do what it’s supposed to?

• No
– Trouble reports list many severe transmission failures 

• Why?
– Systems do not behave according to specification
– Many are related to vague ICDs

• We’re researching how misbehavior can be 
– detected
– resolved



Architecture Compliance Checking

• Does the actual implementation match the 
planned architecture?
– Define a planned architecture
– Create an actual architecture from source code
– Identify architectural violations through comparison

• Our Software Architecture Visualization and 
Evaluation (SAVE) supports static architecture 
compliance cheching



Our SAVE Experience

• Applied to APL’s Common Ground System (and 
other systems)
– NASA Research Infusion project (Aerospace 2007)

• Conclusion
– The SAVE approach is useful and practical
– One can quickly model, visualize, analyze, find static 

architecture violations
– Good for single software applications
– But for systems of systems, need to add dynamic 

information (Dyn-SAVE) as the example will show…



Dependency in 
actual, not in 
planned

Dependency 
in planned, 
not in actual

But, who does 
socket 
communicate 
with?



The Common Ground System
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DynSAVE (Vision)

Telemetry 
Server

Telemetry 
Client

Specify Planned
Behavior

Form Actual
Behavior 

Specify Level of Abstraction
For analysis

Capture Dynamic
Information 

Compare Planned 
and Actual
Behavior 

• Who does socket communicate with?
• Is communication according to specification?



Dynamic Compliance Checking

• Do systems interact as planned?

• Do they adhere to interaction rules?

• Rules specified in ICD’s
– Sequencing
– Content
– Timing



Challenge: Amount and Format of Data

• Amount and 
format of data 
being exchanged

– An interaction 
consists of a 
large number of 
messages

– The information 
is often 
encrypted for 
efficiency



Challenge: Vague ICDs

• Interface Control Documents (ICD) specify plan

• But
– they are missing important information
– they lack necessary detail

• Why?
– Difficult to specify complete and consistent ICD
– Need for tool support



Approach



Specify the ICD

• Provide intuitive user interface to specify ICD

• Provide evaluation of rules for completeness 
and consistency

• Allow for iterative specification



Specifying the Plan
Basic Sequence 

Diagram
Could also be 
specified as a 
State Machine

Advanced    
Sequence Diagram



Evaluation Framework

• Sequencing evaluation algorithm
– Based on DNA sequence analysis
– Find extra and missing messages

• Content evaluation algorithm
– Evaluates constraints on message content
– Example: TYPE==STP

• Timing evaluation algorithm
– Timing between individual messages
– Timing over multiple messages
– Timeouts



Analysis Framework

• Powerful visualization to detect errors and 
investigate the problem

• Abstract
– to highlight potential problems

• Detail
– to facilitate understanding and knowledge mining



Example 1: Correct Sequence



An illegal extra filter is sent after BeginPlayback and Data messages  have been sent. 
The illegal filter is difficult to detect because it is in packet 869.

Example 2: Illegal filter



Detailed planned sequence diagram

Rules: 
1. Start time must be less that stop time
2. Data type of each of the received data messages must match specification 



Example 3: Illegal Time Window specification

Stop time < Start time 



Example 4: Illegal Type specification

STF ordered – STP received. 

=STF)



Conclusion

• Summary
– Prototype detects many of the reported problems
– Visualization help understand interaction behavior

• Future Work
– Evaluate applicability to other protocols
– Make visualization more powerful
– Combine inter-system interaction with intra-system 

behavior to form dynamic profile of entire system of 
systems
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