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E. Alicea-Muñoz1,2 and M. Coleman Miller3

ABSTRACT

Intense structure formation and reionization occur at high redshift, yet there

is currently little observational information about this very important epoch.

Observations of gravitational waves from massive black hole (MBH) mergers

can provide us with important clues about the formation of structures in the

early universe. Past efforts have been limited to calculating merger rates using

different models in which many assumptions are made about the specific values of

physical parameters of the mergers, resulting in merger rate estimates that span

a very wide range (0.1 − 104 mergers/year). Here we develop a semi-analytical,

phenomenological model of MBH mergers that includes plausible combinations

of several physical parameters, which we then turn around to determine how

well observations with the Laser Interferometer Space Antenna (LISA) will be

able to enhance our understanding of the universe during the critical z ∼ 5 − 30

structure formation era. We do this by generating synthetic LISA observable data

(total BH mass, BH mass ratio, redshift, merger rates), which are then analyzed

using a Markov Chain Monte Carlo method. This allows us to constrain the

physical parameters of the mergers. We find that our methodology works well

at estimating merger parameters, consistently giving results within 1-σ of the

input parameter values. We also discover that the number of merger events

is a key discriminant among models. This helps our method be robust against

observational uncertainties. Our approach, which at this stage constitutes a proof

of principle, can be readily extended to physical models and to more general

problems in cosmology and gravitational wave astrophysics.
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1. Introduction

The non-linear universe is a new frontier in cosmology, especially at relatively high

redshifts (z ∼ 5−30) because that is when baryonic structure formation begins (e.g., Barkana

& Loeb 2001). The first objects to form, dark matter halos, undergo hierarchical mergers

and assemble into larger structures (Rees & Ostriker 1977; White & Rees 1978; Peebles

1993). The first galaxies formed inside these halos; however, these primordial galaxies (with

M ∼ 108M⊙) are very dim and hence not readily observed. Thus we are (quite literally)

left in the dark regarding this crucial era in the history of the universe. Therefore, new

techniques must be developed that will allow us to probe the physical processes that drive

the formation of structures in the early universe. One such technique involves studying

the mergers of massive black holes (MBHs), which trace the mergers of their parent halos.

MBH mergers can be observed at high redshifts even if their host galaxies are not bright

enough to be detected (e.g., Volonteri et al. 2003; Wyithe & Loeb 2003; Sesana et al. 2004;

Hughes & Menou 2005). Consequently, observations of the gravitational waves emitted by

MBH mergers at high-z can further our understanding of structure formation in the early

universe.

Due to their importance in the study of structure formation, many research groups

have calculated merger rates of MBHs (e.g., Haehnelt 2003; Enoki et al. 2004; Islam et al.

2004; Sesana et al. 2004, 2005; Rhook & Wyithe 2005). However, the results span a very

broad range (0.1 − 104 mergers/year). The large discrepancies that arise in the assessment

of merger rates result from the choice of different physical parameters in the models used to

perform the calculations. Preliminary results suggest that the minimum mass for a halo to

host a black hole is of special importance in the determination of merger rates.

Here we develop a semi-analytical, phenomenological model that includes plausible com-

binations of several physical parameters involved in MBH mergers. As a proof of principle

we use statistical methods to generate synthetic LISA observable data (total BH mass, BH

mass ratio, redshift, merger rates), which are then run through a Markov Chain Monte Carlo

(MCMC) algorithm to constrain the physical parameters associated with the mergers. Be-

cause LISA distributions of observable parameters are expected to be broad, our method is

relatively robust against uncertainties in the observations. Indeed, our results suggest that

even if there are measurement biases, the total number of LISA-detected events will be a

strong discriminant among models. Our method is also general enough that it can be used

with a number of different observational data constraints.

In § 2 we establish a framework for understanding the dynamics of halo mergers using the

standard Press-Schechter and Extended Press-Schechter approaches. In § 3 we discuss the

relationship between MBHs and their host halos. This is the source of most of the uncertainty
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in merger models. We present our simulations and results in § 4, then summarize in § 5.

2. Dynamics of Halo Mergers

The theory of hierarchical structure formation is based on the growth of linear pertur-

bations in an initial cold dark matter (CDM) density field. Specifically, the Press-Schechter

formalism (Press & Schechter 1974) gives the number density of dark matter halos as a func-

tion of mass and redshift. We use the Sheth & Tormen (1999) modification of the original

Press-Schechter theory in our calculations, as it provides a better fit with numerical simu-

lations. A nicely detailed summary of these standard procedures is given by Mo & White

(2002).

The Press-Schechter formalism does not, however, allow us to follow the merger history

of any particular halo. For this we use the Extended Press-Schechter formalism of Lacey

& Cole (1993). This formalism has been criticized because of mathematical inconsistencies

that arise in the calculations of merger trees (Somerville & Kolatt 1999; Benson et al. 2005).

However, it is important to note that we do not construct full merger trees. Instead, we

recalculate the Press-Schechter halo distribution at each redshift interval. This approach

eliminates cumulative errors, since the inconsistencies disappear for small redshift intervals.

Throughout our calculations we use cosmological parameters determined by the WMAP

3rd-year results (Spergel et al. 2007). Although newer results are available, our proof of

principle method does not need such high precision to work properly.

3. The Relationship Between Massive Black Holes and their Host Halos

The largest uncertainty in merger rate calculations involves the relationship between

MBHs and their host dark matter halos. Here we describe some of these issues.

3.1. Minimum Halo Mass and the Black Hole Occupation Fraction

Suppose no black holes can form in dark matter halos that have less than some minimum

mass Mmin. We motivate this with the standard assumption that black holes need to form

from baryons. That is because baryons can cool, allowing for the formation of stars which

can then evolve into black holes. If the baryons cannot be kept within the halo, then this

does not happen and no black holes can form. The minimum mass of a halo that can host a
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black hole therefore depends on the depth of the potential well compared to the temperature

of the baryons.

There are various possible mechanisms for the formation of massive black holes (Rees

1984). The most common scenario is the collapse of Population III stars (Abel et al. 2002;

Bromm et al. 2002; Heger et al. 2003). These are very massive (∼ 100M⊙) metal-free stars

which form at high redshifts in halos with masses 105 − 106M⊙. Thus halos that contain

Population III stars are likely to be populated with a MBH after the star dies. Here we

assume for simplicity that all halos with mass above a certain Mmin are already occupied

with black holes by z = 20, and that halos with mass below Mmin have a decreasing non-zero

probability of being occupied by a black hole, Pocc = (M/Mmin)
p, with p > 0.

3.2. Black Hole-Halo Mass Correlation

Even if we do have a halo that can form a black hole, there is uncertainty about the

relation of the mass of the central black hole to the mass of the dark matter halo. Though

a link has been shown between the central velocity dispersion of stars and the mass of a

supermassive black hole (see Ferrarese & Ford 2005 for a review), there has been less work

establishing a link between dark matter halo mass and black hole mass. However, Ferrarese

(2002) found the following relation in the local universe:

MBH = 107M⊙

(

Mhalo

1012M⊙

)5/3

. (1)

This can be generalized to include a redshift dependence:

MBH = 107M⊙

(

Mhalo

1012M⊙

)5/3

(1 + z)n, (2)

where scaling arguments suggest n = 5/2 (e.g., Rhook & Wyithe 2005).

3.3. Other issues not treated in the current model

There are various other issues which are important in a full physical model of black

hole mergers. However, these are not essential in our proof of principle, since our goal here

is to demonstrate the method. Thus we make certain assumptions about them without

parameterizing. Two of these issues, which will be treated in more detail in later work, are

dynamical friction and gravitational recoil.
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In order for a black hole merger to occur, there must first be a merger between two halos

with black holes at their centers. Dynamical friction plays an important role in this process,

as its drag brings the two halos together. Once the halos have merged, dynamical friction

causes the central black holes to get closer and form a binary. Note, however, that dynamical

friction between halos becomes inefficient for very large halo mass ratios. Therefore, in our

work we assume that for any two halos with masses M1 and M2, where M1 > M2, there is

a mass ratio cutoff M1/M2 = 50 above which no mergers happen. Additionally, if a merger

takes too long, there is the probability of a third object coming in and disrupting the binary,

thus ejecting one or more black holes in the process (Hoffman & Loeb 2007). Thus we

assume that for M1/M2 < 50 mergers happen immediately, thus not allowing for three-body

interactions.

After a black hole binary hardens, gravitational wave emission will make the black holes

plunge and merge. However, if the black holes have unequal masses or spins there will be

a gravitational recoil effect (e.g., Baker et al. 2006; Campanelli et al. 2007; Herrmann et

al. 2007; Koppitz et al. 2007; Brügmann et al. 2008) that can eject the merger remnant

out of the halo if the kick velocity is high enough (Madau & Quataert 2004). In our work

we assume that if the kick speed of a merger is greater than the escape speed of the host

halo (vkick > vesc), then there is a high probability of ejection of the merger remnant. For

simplicity, we consider only non-spinning black holes. Black holes with spin will be treated

in a future work.

4. Simulations and Results

We want to answer the question of what would LISA observations tell us about the

process of structure formation in the early universe. To do this, we generate synthetic LISA

observable data (total BH mass, BH mass ratio, redshift, merger rates) based on a simple

model of MBH mergers that involves various assumptions about a handful of merger param-

eters. We choose input values for these parameters within a range of plausible, physically

realistic extremes. Using these inputs, we calculate the number density of halos using the

procedures described in § 2. We then sample observables from the probability distribution

thus generated by using the rejection method (Gentle 2003). The generated number of events

is determined by the observation time. For our simulations the assumed observation time is

three years.

Our statistical goal is to find and explore regions of high likelihood in parameter space.

The synthetic data is analyzed to determine how well we can recover the values of the input

parameters used in the data generation process. The Markov Chain Monte Carlo (MCMC)
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method gives us a computationally robust yet inexpensive way of doing this. A useful

description of the general MCMC algorithm is given by Verde et al. (2003).

We are currently working with a four-parameter model of merger events. These param-

eters, and their explored ranges, are:

(i) Minimum halo mass (Mmin). This is the mass above which all halos are occu-

pied with black holes at z = 20. The explored range of this parameter is 5.0 <

log10(Mmin/M⊙) < 12.0.

(ii) Power law index (p). Indicates the probability of occupation of a halo with mass

M < Mmin at z = 20 as Pocc = (M/Mmin)
p, for 0.1 < p < 4.0.

(iii) Redshift dependence (n). Indicates the redshift dependence of the BH-halo mass

relationship, and it is given by MBH,0 = [MBH(Mhalo)](1 + z)n, for 0.0 < n < 5.0.

(iv) BH mass spread (σ). This is the spread in the BH mass as a function of halo mass,

defined as P (log10(MBH/M⊙)) ∝ exp[(log10(MBH/M⊙) − log10(MBH,0/M⊙))2/2σ2], for

0.1 < σ < 1.0.

We generated synthetic data for five combinations of input parameter values. The top

portion of Table 1 shows the input values and the results of the simulations, and Figure 1

illustrates a representative sample. Additionally, we simulated the effects of observational

uncertainty by adding errors to the synthetic LISA data. This is done by scrambling the

values of the total BH mass, BH mass ratio and redshift independently of each other. That

is, for some parameter x with unaltered value x0, we created a biased data set by altering

the parameter value to (1.0 − 1.4)x0, and an unbiased data set by altering the parameter

value to (0.8 − 1.2)x0. The bottom portion of Table 1 shows the results of these tests, and

Figure 2 shows a representative sample.

Table 1 (top section) shows the parameter values at the point of maximum likelihood

obtained from our MCMC procedure in each simulation. The error bars represent the 68%

confidence level, or a 1-σ deviation. A quick comparison between the results and the input

parameter values reveals that for Runs 1, 2, 3 and 5 our points of maximum likelihood fall

within 1-σ of their input value, while Run 4 has one resultant parameter value lie just outside

the 1-σ margin. Of the 20 parameter ranges explored (five simulations with four parameters

each), only one is outside the 68% confidence level. This suggests a slightly non-Gaussian

distribution.

Figure 1 illustrates the results from one of these simulations (Run 1). Each plot

shows the relationship between a pair of parameters (left column: log10(Mmin/M⊙) − p,
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log
10

(Mmin/M⊙) − n, log
10

(Mmin/M⊙) − σ; right column: p − n, p − σ, n − σ). Notice the

nicely constrained correlations, particularly in the log10(Mmin/M⊙)−p plot. This is because

the number of merger events is critical in determining the shape of the confidence regions.

The bottom part of Table 1 (Runs 1b, 1u, 2b, 2u) shows the parameter values at the

point of maximum likelihood obtained from our MCMC procedure on each simulation done

with data altered in a biased or unbiased way. From the table data it can quickly be assessed

that simulations carried out with altered unbiased data give us results as accurate as those

for which the data were not altered, i.e., all resultant parameter values lie within 1-σ of their

input values. However, for altered biased data we can see that the results lie outside the 1-σ

region.

Figure 2 shows the results of a representative altered-data simulation. All three plots

show the log
10

(Mmin/M⊙) − p correlation; the top panel resulting from altered unbiased

data (Run 2u) and the bottom panel resulting from altered biased data (Run 2b). The

middle panel (Run 2) shows the results from the control simulation, for which the data was

not altered in any way. Notice that the results from altered unbiased data keep the point

of maximum likelihood within the 68% confidence level, while the results from the altered

biased data do not. Additionally, altered unbiased data results in a wider 1-σ region than

unaltered data. Note however that we obtain a fairly reasonable parameter estimation even

from altered unbiased data, and biased data as well but to a lesser extent, because in our

simple scenario the number of merger events can discriminate between models with different

parameter values.

5. Summary and Discussion

Our method works well at estimating merger parameters even when there are observa-

tional uncertainties involved. Our simulations run with altered unbiased data give us results

of comparable accuracy to the results obtained from simulations where the data was unal-

tered, albeit with slightly less tight constraints. Results from simulations run with altered

biased data are expectedly less accurate, with some parameter values estimated outside of

the 1-σ margin from the input values. The general shape of the confidence regions, however,

remains consistent throughout our results, even when altered biased data was used. This

is because the number of merger events determines the shape of the confidence region, thus

allowing us to distinguish models with different parameter values.

We have thus established a flexible framework which works well at estimating MBH

merger parameters in our phenomenological model. In future work we will explore more
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physically driven models with additional merger and cosmological parameters. One espe-

cially important parameter is the redshift of reionization. Reionization can increase the

temperature of the baryons at the centers of dark matter halos, effectively resulting in an

increase in the minimum mass for a halo to form a black hole. Another essential model com-

ponent is the LISA detection sensitivity, since not every merger that happens in the universe

is detectable. This can also lead to degeneracies between models, i.e., very different models

resulting in similar numbers of detected merger events (Sesana et al. 2007). Furthermore,

the statistical method we use is sufficiently general that in the future it will be possible to

incorporate additional sources of parameter constraints, such as currently available observa-

tional data of high redshift galaxies and future observations carried out with the Atacama

Large Millimeter Array (ALMA) and the James Webb Space Telescope (JWST ) once they

become operational.
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Table 1. Simulations

Input Parameters Max Likelihood

Run Nev m p n σ m p n σ

1 169 8.5 1.5 0.5 0.2 8.62 ± 0.36 1.42 ± 0.45 0.55 ± 0.20 0.19 ± 0.10

2 245 9.3 1.0 1.5 0.4 9.43 ± 0.36 0.94 ± 0.11 1.68 ± 0.27 0.39 ± 0.08

3 219 9.3 1.0 1.5 0.2 9.13 ± 0.28 1.07 ± 0.12 1.59 ± 0.23 0.22 ± 0.08

4 16 9.3 1.5 1.5 0.4 9.08 ± 0.46 1.75 ± 1.36 1.45 ± 0.54 0.18 ± 0.21

5 155 9.3 1.0 0.5 0.4 9.19 ± 0.46 1.07 ± 0.21 0.68 ± 0.28 0.39 ± 0.09

1b 169 8.5 1.5 0.5 0.2 8.54 ± 0.24 1.57 ± 0.35 0.99 ± 0.17 0.11 ± 0.07

1u 169 8.5 1.5 0.5 0.2 8.63 ± 0.36 1.41 ± 0.41 0.52 ± 0.20 0.22 ± 0.10

2b 245 9.3 1.0 1.5 0.4 8.93 ± 0.21 1.16 ± 0.12 1.85 ± 0.20 0.35 ± 0.07

2u 245 9.3 1.0 1.5 0.4 9.51 ± 0.38 0.92 ± 0.12 1.74 ± 0.28 0.39 ± 0.08

Note. — Col. (1): Simulation number. Col. (2): Number of generated merger events

over a three year period. Cols. (3, 7): Minimum halo mass, m = log10(Mmin/M⊙). Cols.

(4, 8): Power law index, p. Cols. (5, 9): Redshift dependence, n. Cols. (6, 10): BH

mass spread, σ. Columns 3 − 6 are the input parameters for the simulations. Columns

7 − 10 show the maximum likelihood results for each simulation (i.e., the best estimate

parameters). Error bars represent the 68% confidence level. Simulations labeled ’b’ and ’u’

represent biased and unbiased data, respectively. Results show our method works well at

estimating merger parameters.
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Fig. 1.— Confidence regions in parameter estimation for 169 merger events over a 3-year

observation period. The actual values of the parameters are log
10

(Mmin/M⊙) = 8.5, p = 1.5,

n = 0.5, σ = 0.2 (Run 1). Notice the nicely constrained correlation on the first panel

(top-left).
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Fig. 2.— Simulating observational errors. Top panel: altered unbiased data (Run 2u).

Middle panel: no alterations (Run 2). Bottom panel: altered biased data (Run 2b). Actual

values of the parameters shown here are log10(Mmin/M⊙) = 9.3 and p = 1.0, with 245 total

merger events over a 3-year observation run. Note that the parameter estimation is not

severely affected by either biased or unbiased errors in the data.


