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ABSTRACT 

W present the extension of the magnetic breakout model for CME initia- 
tion to  a fully 3-dimensional, spherical geometry. Given the increased complex- 
ity of the dynamic magnetic field interactions in 3-dimensions, we first present 
a summary of the well known axisymmetric breakout scenario in terms of the 
topological evolution associated with the various phases of the eruptive process. 
In this context, we discuss the completely analogous topological evolution dur- 
ing the magnetic breakout CME initiation process in the simplest 3-dimensional 
multipolar system. We show that an extended bipolar active region embedded in 
an oppositely directed background dipole field has all the necessary topological 
features required for magnetic breakout, i.e. a fan separatrix surface between 
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the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional 
coronal null point at their intersection. We then present the results of a nu- 
merical MHD simulation of this 3-dimensional system where boundary shearing 
flows introduce free magnetic energy, eventually leading to a fast magnetic break- 
out CME. The eruptive flare reconnection facilitates the rapid conversion of this 
stored free magnetic energy into kinetic energy and the associated acceleration 
causes the erupting field and plasma structure to reach an asymptotic eruption 
velocity of 21100 km/s over an -15 minute time period. The simulation results 
are discussed using the topological insight developed to interpret the various 
phases of the eruption and the complex, dynamic, and interacting magnetic field 
structures. 

Subject headings: MHD - Sun: corona - Sun: coronal mass ejections - Sun: 
magnetic fields 

1. Introduction 

The magnetic breakout model (Antiochos et al. 1999) continues to  be one of the leading 
theories for explaining the initiation of coronal mass ejections (CMEs). While formulated and 
first demonstrated in an axisymmetric (2.5-dimensions) spherical geometry, the same physical 
mechanisms invoked by the axisymmetric breakout scenario could, and should, take place in 
a fully 3-dimensional system with a sufficient level of magnetic complexity. The most generic, 
non-trivial three-dimensional magnetic configuration is the field of two dipole (or dipole-like) 
sources. The resulting field configuration gives a two-flux system with two distinct polarity 
inversion lines (PILs), a dome-like separatrix surface at the interface of the two flux systems, 
and a single null-point at the intersection of the spine fieldlines with the separatrix surface 
(see Figure 1 in Antiochos 1998). Given that this 3D magnetic configuration is fundamentally 
simpler than the quadrupolar axisymmetric system, the magnetic breakout process in 3D 
now involves the transfer of flux within each system from one "side" of their respective PILs 
to the other. In this sense, a 3-dimensional two-flux system can act in an analogous fashion 
to  the axisymmetric four-flux system in that the transfer of restraining flux from above 
the expanding, low-lying sheared field in both the local and background flux systems is a 
runaway process leading to the eruptionlopening of some portion of the field associated with 
the stressed flux system. 

There is a growing body of theoretical and numerical work confirming the viability and 
robustness of the magnetic breakout model model. Previous numerical simulations of ax- 
isymmetric quadrupolar field configurations have shown catastrophic eruptions of stressed, 



low-lying field (Antiochos et al. 1999; MacNeice et al. 2004) and a quantitative description 
of the free magnetic energy parameterized by the amount of reconnection available to  the 
system has been developed (DeVore & Antiochos 2005). Phillips et al. (2005) showed that for 
axisymmetric multipolar configurations, a net-zero magnetic helicity shearing pattern could 
still produce a catastrophic eruption and that the magnetic free energy was the driving fac- 
tor in the breakout scenario. Zhang et al. (2006) examined the role of both the breakout 
and eruptive flare reconnection in quadrupolar systems obtaining different velocity profiles 
depending on which current sheet was allowed to  reconnect first. The breakout model has 
been shown t o  facilitate eruptions from energized side-arcades of axisymmetric multipolar 
configurations (Gao et al. 2004), and recent work has gone into the role of breakout recon- 
nection and flux-transfer to initiate "sympathetic" CMEs from topologically connected or 
adjacent energized flux systems (DeVore & Antiochos 2006; Peng & Hu 2007). van der Holst 
et al. (2007) has presented a numerical simulation of an axisymmetric breakout eruption with 
a full solar wind model and shown the eruption blows-out the overlying helmet streamer. 
Recent simulations by DeVore & Antiochos (2008) have shown the breakout process works in 
a true 3-dimensional system with four distinct flux systems and a null line that intersects the 
boundary, yielding homologous eruptions when the system is continually energized. Roussec 
et al. (2007) have also exploited complex topology to generate breakout-like behavior for 
simulations of the 21 April 2002 and 24 August 2002 CME events, starting their simulations 
with actual magnetogram field observations. Since observed magnetic field configurations 
are often remarkably complex making it difficult to get a handle on the underlying physics 
of the eruption in these cases, our approach in the current work is to  concentrate on the sim- 
plest 3-dimensional field that can facilitate the breakout initiation model in order t o  increase 
our understanding of the eruption process itself. 

There are many observational studies that appear to  agree with the breakout initiation 
scenario (Aulanier et al. 2000; Wang et al. 2002; Sterling & Moore 2001, 2004; Manoharan 
& Kundu 2003; Gary & Moore 2004). However, there are some that do not (e.g. Li and 
Luhmann 2006; Ugarte-Urra et al. 2007). Additionally, there are some events that while 
compatible with magnetic breakout topologically, are unclear either way (Bong et al. 2006; 
Li et al. 2008). On the theoretical side, there continue to be misgivings that the breakout 
model is able to produce fast CMEs (Aschwanden et al. 2006; Forbes 2006; van der Holst et 
al. 2007) or is able to  account for the rapid acceleration phase associated with the transition 
from rising- to  erupting-filament/prominence material often observed in the low corona (e.g. 
Schrivjer et al. 2008). The simulation results presented herein will address both of these 
issues. 

The structure of the paper is as follows. In $2 we will first review the standard (2.5D) 
breakout eruption process in the context of the topological evolution of the system and then 



go through breakout in a fully 3-dimensional geometry, highlighting the analogous topological 
changes associated with each phase of the eruptive process. In $3 we present results of a 
numerical MHD simulation of breakout CME initiation which produces a highly complex 
erupting field structure, the dense leading-edge and depleted cavity region often seen in 
coronagraph observations of 3-part CMEs, and a two stage height-time profile that shows a 
remarkably sharp transition to  a uniform eruption velocity of 2 1100 km/s. We continue 
by briefly discussing the current sheet formation and 3D magnetic reconnection associated 
with both the magnetic breakout and eruptive flare reconnection and the evolution of the 
magnetic and kinetic energy of the system. In 54 we close with a discussion of future work. 

2. Topological Evolution of the Breakout Initiation Scenario 

Figure 1 shows both a schematic of the four main stages of the breakout model mecha- 
nism for CME initiation (left column) and the corresponding snapshots of the MHD numer- 
ical simulation results of MacNeice et al. (2004) 

Panel (a) shows the initial potential field state of the axisymmetric multipolar topology 
and the associated topological features of the four-flux system. The fieldlines are colored in 
the manner of Antiochos et al. (1999) and the surface extent of each flux system is shaded 
on the disk in light-blue, green, and red. The separatrix surfaces between the different flux 
systems are drawn in black and the intersection of these surfaces with the r = Ro inner 
boundary are indicated as solid black lines on the disk face. The coronal null point (really 
a null-line in 2.5D) is defined as the intersection of these surfaces in the corona. The three 
PILs are also drawn as dashed lines on the disk face. The dark-blue region surrounding the 
equatorial PIL indicates the narrow shearing channel where the energization of the system 
will occur by imposing ideal azimuthal shearing flows. 

Panel (b) shows the energization and magnetic breakout phase of the eruptive process. 
The inner flux system expands due to  the increase in magnetic pressure associated with 
introducing a non-zero $-component and the X-type null point (line) becomes distorted. 
Volumetric currents start to  build up along the separatrix surfaces and are concentrated be- 
tween the oppositely-directed blue and red flux systems. In the numerical MHD simulations, 
once the current sheet structures are compressed to the scale of the computational grid, 
numerical diffusion acts as a localized increase in magnetic resistivity and allows magnetic 
reconnection, to "switch-on7'. Reconnection enables the transfer of magnetic flux from the 
inner and overlying systems (blue and red) to  the (green) side-lobe arcades. The loss of 



restraining field above the shear channel allows increasingly rapid expansion which in turn 
drives increasingly faster magnetic reconnection. The positive feed-back loop between ex- 
pansion and magnetic breakout reconnection, also called "external" reconnection (Moore et 
al. 2001), leads to  the catastrophic expulsion of the low-lying sheared field to infinity and is 
the defining physical process of the breakout mechanism for CME initiation. 

The consequences of the flux transfer and accumulation in the green side-lobe arcades 
is that the separatrix surfaces evolve in time, and therefore, the boundaries between flux 
systems on solar surface move in response to the coronal activity. In other words, the break- 
out reconnection phase can be characterized by the inner side-lobe separatrix boundaries 
moving towards the shear channel (as unsheared light-blue flux is transferred) and the outer 
side-lobe separatrix boundaries move towards the poles (as overlying red flux is transferred). 
This topological evolution is shown as pairs of green arrows to  the left of the disk surface. 

Panel (c) shows the eruptive flare reconnection that starts deep in the shear channel. In 
the breakout model, this "internal" reconnection (Moore et al. 2001) is a direct consequence 
of the runaway expansion via the formation and lateral compression of a radial current sheet 
between the oppositely directed legs of expanding sheared field, and is driven by the magnetic 
breakout reconnection. This phase of the breakout mechanism is the standard CHSKP flare 
reconnection (Carmichael 1964; Hirayama 1974; Sturrock 1968; Kopp & Pneuman 1976), 
which is common to all models of CME initiation (e.g. Linker et al. 2003; Forbes & Lin 
2000; Roussev et al. 2004, 2007). The flare reconnection has two main effects. First, in 
the breakout model the entire erupting structure is processed through the flare reconnection 
region and this has the consequence of imparting a high degree of twist t o  the erupting 
fields, transforming the expanding sheared arcade into a flux rope configuration during the 
eruption. A limitation of the axisymmetric simulations is that the flare reconnection creates 
truly disconnected fieldlines, we will show that in 3D the erupting structure resembles a 
flux rope with both footpoints anchored at the solar surface. Second, the flare reconnection 
rebuilds the central blue arcade underneath the erupting sheared field and attempts to  
return the system to  a more potential state. It  should also be noted that this creates 
another separatrix surface and a new null point underneath the opening field of the inner 
arcade. The blue arrows indicate the motion of the newly-formed separatrix that defines the 
boundary of the unsheared (or significantly less-sheared) "flare loops" (light-blue) with the 
erupting field (dark-blue) in the process of opening to infinity. The flare reconnection allows 
for the most efficient conversion of stored magnetic free energy into kinetic, thermal, and 
gravitational energy. 

Panel (d) shows the final relaxation stage of the multiflux systems in the wake of the 
eruption as well as the propagation stage of the ejecta itself. The eruptive flare reconnection 



depicted in Panel (c), when acting on the fields in the shear channel is fast and energetic, 
corresponding to the often observed "impulsive" phase of flares. Once the entire shear 
channel field has been processed, the side arcades come together and reconnect at the flare 
current sheet. These side-lobe fields tend to  be much less sheared and their reconnection 
proceeds in a slower, less energetic manner corresponding to  the "gradual" phase often 
observed in flares. When the (green) side-lobe fields reconnect, they restore both the inner 
(light blue) and overlying (red) flux systems- denoted by the green arrows showing the 
side-lobe separatrix surfaces shrinking. Since this topological evolution is the reverse of the 
original breakout reconnection, one can think of the post-eruption restoration of the original 
flux system configuration as "anti-breakout" reconnection. The anti-breakout reconnection 
eventually dissipates the radial current sheet and eventually restores the coronal null-point. 

The erupting flux rope structure continues to  propagate through the background dipole 
fieldlines, and in our axisymmetric picture, this means continual breakout reconnection a t  the 
interface of the oppositely-oriented flux rope configuration and the overlying field. However, 
there is an important topological distinction to be made between the overlying field that 
has yet to  encounter the ejecta and that which has either been reformed behind the flux 
rope (from anti-breakout reconnection) or has recently encountered the flux rope and has 
undergone reconnection such that it now closes behind the ejecta. This distinction is denoted 
in the figure by coloring the background fieldlines that have yet to encounter the flux rope 
and their surface flux distribution orange. A dynamic separatrix-like surface exists between 
the ejecta flux system, the original overlying (red) system, and the (orange) background 
fields. The orange flux system corresponds to  overlying field "opened" by the eruption, 
and should be observable as remote dimming regions or the evolution of the coronal hole 
boundaries (e.g. Attrill et al. 2006, 2007). Both the continued propagation of the CME (and 
its interaction with the background field) and the anti-breakout reconnection above original 
source arcade play a role in restoring the original overlying (red) flux system. 

Figure 2 is the schematic of the analogous stages of the topological evolution of magnetic 
breakout in a fully 3-dimensional system. Each panel corresponds to the phase of the eruptive 
process described in the previous section for the axisymmetric case. 

Panel (a) plots the initial magnetic features corresponding to two distinct flux systems. 
The polarity inversion lines are again shown as dashed lines on tfhe disk. In three dimensions, 
the boundary between flux systems is a dome-like separatrix surface that encompasses the 
entire flux closing over the local active region PIL. The intersection of this separatrix surface 



is again shown as the solid line on the disk face. There are two spine fieldlines, one originating 
in the opposite polarity spot of the active region flux system and "closes" as the separatrix 
surface, the other originating in the southern hemisphere, also "closing" as the separatrix 
surface. The coronal null point is initially where the spine lines meet. The intersection of 
the spine lines with the solar surface is indicated by the solid black dots. The evolution of 
the spine field line in 3-dimensions will correspond to  the evolution of one of the separatrix 
surfaces in the axisymmetric configuration, but as a line instead of a planar structure. 

In this simple geometry, the active region flux system consists of field that plays the 
role of both the inner-arcade (blue) and the upper side-arcade (green) flux systems with the 
overlying background field playing the roles of the lower side-arcade (green) and overlying 
flux system (red) in the axisymmetric scenario. The highly concentrated shear channel (dark 
blue stripe) now only extends over a portion of the active region polarity inversion line. 

Panel (b) shows the surface evolution of the AR separatrix dome and spine fieldline dur- 
ing the breakout reconnection process. Magnetic reconnection at a current sheet formed at 
the distorted null point reconnects blue and red flux, shifting overlying unsheared field from 
one side of the AR flux system to the other and likewise, from one side (red) of the back- 
ground flux system to  the other (green). The additional flux deposited over the respective 
portions of the PILs shift the separatrix dome boundary one way and the spine fieldlines 
the opposite direction. The net result being completely analogous to  the 2.5-dimensional 
evolution. The system is minimizing the amount of unsheared field it will be required to  
open when it ejects the low-lying sheared flux. The positive feedback between expansion of 
the stressed inner arcade half of the AR flux system and the rate of breakout reconnection 
at the null point eventually leads to the explosive eruption and flare reconnection stage. 

Panel (c) depicts the eruptive flare reconnection expected in 3-dimensional breakout. 
The orange regions on the disk face represent the footpoints of the erupting structure because 
without the axisymmetry that creates truly disconnected flux, every fieldline is still rooted at 
the solar surface. The two footpoints on opposite sides of the active region PIL are obvious, 
but in 3-dimensions in order to open field inside a separatrix, the entire separatrix surface 
must open as well. This will mean both the spine fieldline and the entire separatrix dome 
will be temporarily opened as the system ejects the stressed, sheared field. Every boundary 
between open (orange) and closed (white) field is a separatrix surface. In the process of 
opening, the spine lines have become a finite area region. This configuration corresponds 
exactly to the nesting conjecture discussed in detail by Anitochos et al. (2007) in the context 
of the steady state magnetic configuration of low-lying coronal holes. Despite our dynamic 
and energetic evolution, opening the entire separatrix dome surface, even temporarily, must 
lead to the opening a narrow channel (possibly measure-zero) of field extending to the foot- 



points of flux in the background system also being opened during the eruption process. This 
narrow, open-field is identical to the postulated channels of open field connecting seemingly 
disconnected coronal holes in the same polarity region (Antiochos et al. 2007). 

The internal flare reconnection acts to erode the footpoints of the erupting structure 
while attempting to rebuild the portion of the AR flux system catastrophically disturbed by 
the eruption of sheared field. The newly formed fieldlines below the erupting structure are 
much more potential and the blue arrows indicate the flare loop arcade growth along the 
PIL. The flare reconnection can also impart a tremendous amount of twist onto the erupting, 
initially-untwisted sheared field. Completely analogous to  the axisymmetric case, a twisted, 
and possibly highly-twisted flux rope like structure is created during the eruption process 
and a consequence of the flare reconnection. 

Panel (d) corresponds to the final relaxation phase in 3-dimensions. The vast majority 
of the inner arcade (light blue) has been restored by the eruptive flare reconnection and we 
enter the anti-breakout phase of the system's flux rearrangement. The upper (green) half of 
the active region flux system continues to unload its excess flux onto the lower half (light 
blue), and the global background flux system does likewise (from the lower green flux to 
overlying red flux). The connectivity of the erupting sheared flux has been completely eaten 
away through interchange reconnection (e.g. Gosling et al. 1995; Crooker et al. 2000; Owens 
et al. 2007; Lepri et al. 2007) from either side of the original AR PIL and now connects 
to the polar open field regions representing either coronal holes (in the presence of global 
open field) or in our case the amount of background flux carried out along with the eruption. 
The spine line is the last "open" field line that closes back down in the wake of the ejection 
of the low-lying sheared field, signaling the simultaneous restoration of the separatrix dome 
enclosing the entire active region flux. The location of the spine line footpoints will continue 
to evolve with continued anti-breakout reconnection. The remote open-field regions are also 
eaten away as the ejecta propagates out to  infinity through the continued interaction of the 
breakout reconnection on the front side of the erupting flux and anti-breakout reconnection 
beneath the erupting structure. 

Figure 3 plots the initial 3-dimensional magnetic field configuration of the MHD sim- 
ulation and all of the various topological features described in the first panel of Figure 2. 
Here, panel (a) plots the radial field at the inner boundary in greyscale along with a series 
of representative fieldlines in the meridional plane of symmetry. The yellow lines on the 
solar surface indicate the two magnetic PILs belonging to  the extended AR and global back- 
ground flux systems. The blue dots indicate the spatial location of the intersection of the 
separatrix dome surrounding the AR flux system with the solar surface. The spine fieldline 
is colored white and the yellow isosurface of plasma /3 = 2000 indicates the 3-dimensional 



coronal null point. Panel (b) shows the azimuthal extent of the strong-field active region and 
the separatrix boundary. Panel (c) shows a zoomed-in view of the coronal null point. While 
the numerical simulation is truly 3-dimensional, we have chosen this latitudinally-extended 
dipolar configuration which is, in a sense, quasi 2-dimensional, for two reasons. First, t o  
reproduce as much as possible the behavior seen in the axisymmetric case and therefore, 
significantly ease our interpretation of the results and assist in drawing the analogy between 
the two. Second and more importantly, basically all erupting filament channels are "long" 
with respect to the "width" of the highly concentrated shear zone surrounding the PIL. The 
details of the construction of this field configuration are described further in 5 3.2.1. 

3. MHD Simulation of 3D Breakout 

3.1. Numerical Methods 

The Adaptively Refined MHD Solver (ARMS) code calculates solutions to  the nonlinear, 
coupled, time-dependent partial differential equations of magnetol~ydrodynamics (DeVore et 
al. 2008). The MHD equations describe the temporal evolution and transport of density, 
momentum, and energy throughout the plasma and include the induction equation for the 
evolution of the magnetic field. We also require an equation of state for the plasma that 
closes the system of equations. The equations of ideal MHD are thus, 

Here, p is the mass density, v the velocity, B magnetic induction, T the temperature, and 
the ratio of specific heats is y = 5/3. For the plasma equation of state, we use the ideal gas 
law, p = 2(p/m,)kBT with kB being Boltzmann's constant and m, the proton mass. The 
solar gravitational acceleration is g = g@(R@l~-)~?.  

There is no explicit magnetic resistivity in the above equations, but necessary and stabi- 
lizing numerical diffusion terms introduce an effective resistivity on very small spatial scales 
on very small spatial scales, i.e. the size of the grid. In this way, magnetic reconnection can 
occur when magnetic null-points or current sheet features have been distorted or compressed 
to the local grid-scale. 



The numerical scheme used is a finite-volume, multi-dimensional flux-corrected trans- 
port (FCT) algorithm in spherical coordinates, developed by DeVore (1991). The spatial 
storage location of the fields, velocities, and fluxes in each cell are staggered such that the 
FCT formulation guarantees V - B = 0 to  machine accuracy. The code is formally second- 
order accurate in space and time for a uniformly spaced grid. The ARMS code is fully 
integrated with the adaptive mesh toolkit PARAMESH (MacNeice et al. 2000), to  handle 
dynamic, solution-adaptive spherical grid refinement and support multi-processor paralleliza- 
tion. 

Figure 4 shows the numerical grid used for the calculation. The grid refinement levels 
have been calculated t o  best resolve the boundary flows and the active region shear channel. 
In this simulation the grid remains static after this initial refinement at t = 0 s. Panel 
(a) shows the full computational domain: 1 Ro < r < 20 Ro, 0 .0625~ < 0 < 0.9375~,  
and -0.57~. < $ < 0 . 5 ~ .  The coarsest grid resolution in (r, O,$)  is 80 x 64 x 64 and there 
are 3 additional levels of grid refinement that each double the resolution for a total of 
approximately 4.5 million cells. The radial griding is logarithmic, so the r : 0 : $ aspect ratio 
remains constant throughout the computational domain in each refinement level. Panel (b) 
shows the finest grid, necessary for resolving the imposed boundary velocity pattern and the 
evolution of the low lying sheared flux. Panel (c) shows the azimuthal extent of the various 
refinement regions on the solar disk face. 

3.2. Initial Conditions 

3.2.1. Magnetic Field 

We construct the latitudinally-extended magnetic field configuration shown in Figure 3 
by creating a distribution of twenty-eight magnetic dipoles, placed beneath the r = 1 Ro 
surface. The total initial field is the superposition of these magnetic field sources, B(r) = 

~ ? " ( r ) ,  with i = 0 to  27 and the standard dipole field of 

where ni is a unit vector in the direction of r - r ~ , ~ ,  mi is the unit vector in the direction 
of the ith dipole moment, R? is the characteristic length scale, and Mi is the magnitude in 
units of Gauss. The global background dipole is located at the origin ro ,~  = [0, 0,0], pointing 
in the m o  = i direction with MO = 1.0 G and a length scale of R? = 1 R,. The spatial 
location (r,  O,$)  of each of the dipoles making up the elongated active region (i = 1 through 



27) is given by 

0.928571Ro, 0.41667n, 0 .1274~  

each having characteristic length scales of R? = 0.342857R0, magnitudes Mi = 0.150 G,  and 
oriented in the mi = 8 direction. The maximum active region field strength is approximately 
k25  G at the photosphere and the total 4 range of the active region is ~ 6 0 " .  The shearing 
flows are defined over a -12" range in 6' centered on the AR PIL, giving our shear channel 
a length-to-width ratio of 5: 1. 

3.2.2. Solar Atmosphere 

For simplicity, we take a spherically symmetric solar atmosphere. The temperature 
profile is chosen such that it has an r-I radial dependence. To satisfy the hydrostatic 
equilibrium conditions, the remaining atmospheric parameters must also have power-law 
forms. Thus, our complete plasma profiles are given by 

We choose the gas pressure exponent p = Ro/Ho = 6.0, where the pressure scale height 
defined as Ho = 2kBTo/m,go. Solar gravity at the surface is go = 2.75 x lo4 cm s - ~ .  

The initial gas pressure a t  the surface is set at po = 0.025 dyn and the remaining 
initial surface quantities To and no are determined from the ideal gas law and the specified 
value of the pressure exponent, yielding To = 1.9433109 x lo6 K and no = 4.6587396 x 
lo7 ~ m - ~ .  

The solar atmosphere profiles of density, temperature, and gas pressure are chosen t o  
keep the plasma ,B = 87rp/B2 as reasonable as possible over the entire computational 
domain. At large distances, the magnetic energy is dominated by the background dipole 
field and falls off as r-6, which motivated our choice for the pressure power-law exponent p. 

In the strong field active region and along the shear channel during the simulation, ,i3 5 0.001, 
although it is of O(3) a t  large distances (> 5 Ro) and diverges approaching the null point. 

Figure 5 plots both the radial dependence of the plasma 9 (diamonds) and Alfven 
speed VA (triangles) along a radial cut in the meridional plane of symmetry (4 = 0) 
and at 14.75" latitude. This cut approaches the coronal null point located at (r, $,$) = 

[1.8377Ro, 0.36328n, 01 and shows the significant spatial variation of both VA and ,B, 3 and 
4 orders of magnitude, respectively. 



3.2.3. Boundary Shearing Flows 

The surface flow pattern on the inner radial boundary has been constructed to  preserve 
the normal component of the magnetic field B, at the surface. This ensures that the shearing 
motions only add magnetic free energy to the system. However, due to  the complicated 
spatial variation of B, in the vicinity of the active region PIL, we must abandon the simple 
incompressible shearing flows used to  drive the 2.5-dimensional simulations. The shearing 
motions in the 3-dimensional case can be calculated from the requirement 

In order to  have aB,/at = 0 satisfied, the velocity pattern must obey V (B,vl) = 0. Thus, 
it is convenient to  have the B,vl be a curl of the radial unit vector multiplied by a scalar 
function, 

1 
~ l ( O , $ , t )  = -V x f(645,t) t 

B, (9) 

We choose the function f (@,$, t) = &B:(0, $)Q(O)@($)r(t) so that v i  has a linear depen- 
dence on B, (after the curl derivatives) and goes to  zero at the PIL. The spatial and temporal 
extent of the driving flow is specified by the smooth functions a($),  8(0) ,  and ~ ( t ) .  The 
$-spatial dependence of the driving flow is a relatively straight-forward sinusoid, given by 

(1 - cos [ 2 ~ ( $  + 0 . 1 7 ~ ) / 0 . 3 4 ~ ] )  x 

@@I = (1 - cos [ 2 ~ ( $  - 0 . 1 7 ~ ) / 0 . 3 4 ~ ] ) ,  - 0 . 1 7 ~  < $ < + 0 . 1 7 ~  (lo) 
0, otherwise 

The 0-filter also has a sinusoidal dependence, defined over the specified range 0 . 3 8 ~  < 8 < 
0.45333~, 

1 - cos [ 2 ~ ( 0  - 0.38~)/0.03665~], 0 . 3 8 ~  < 0 < 0.41665~ 
1 - cos [2n(0 - 0.41669~)/0.03665~], 0.41669~ < 0 < 0.45333~ (11) 

0, otherwise 

The temporal dependence is a piecewise-continuous function, given by two sinusoids 

1 - cos [2nt/104], 0 < t < 6000 
0.904582 (1 - cos [ 2 ~ ( t  - 5000)/2000]) , 6000 < t < 7000 (12) 

0, otherwise 

such that the shearing velocity reaches its maximum value at t = 5000 s and quickly ramps 
down to zero between 6000 < t < 7000 s. 



The top panel of Figure 4 shows the spatial dependence of the #-component of the total 
shearing profile vl(O, #, t )  on the surface r = 1 Ro. The arrow graphics objects show the 
(normalized) direction of the vector flow field, and the black lines indicate flow streamlines 
depicting the oppositely directed shearing near the AR PIL and the structure of the return 
flows. The complexity of this shearing pattern has a distinct imprint on the structure 
and complexity of the erupting sheared field. The bottom panel shows the multiplicative 
temporal dependence imposed on the surface flows. To minimize the computational time, Vo 
is chosen such that the maximum shearing velocities reach a,pproximately f 130 km s-I a t  
t = 5000 seconds, but the average value over the 7000 second shearing phase is 65 km s-l. 
Realistic photospheric velocities are of the order of -1 km/s, but the sirnulation driving 
motions are much much less the Alfven speed in the strong field region a t  the solar surface 
(max[vL]/ max[VA] 5 l.5%), so the system still evolves quasi-statically. The maximum 
boundary flow velocities do approach the sound speed near the surface (-164 km s-I), so 
we expect a weak acoustic shock to form and propagate through the atmosphere in response 
to the driving. However, the runaway expansion and eruption dynamics are due to  the rapid 
magnetic reconfiguration of the corona rather than a "directly driven" consequence of the 
boundary shearing flows. As we will see below, the resulting eruption velocities are more 
than an order of magnitude above the imposed surface flows. 

3.3. Results 

3.3. I .  Ei-uption Overview 

Figure 7 shows the evolution of the magnetic field in a series of fieldline plots. The 
fieldlines are all traced from the # = 0 plane, and correspond to  simulation times printed 
in the upper left-hand corner of each frame. The fieldlines are colored to match the 2.5- 
dimensional Antiochos et al. (1999) results for clarification of the role each "portion" of 
the two flux system plays. From this side-view, the evolution looks quite similar to the 
axisymmetric case in that the expanding field reconnects all of the unsheared flux (light blue 
fieldlines) with the overlying flux (red) and transfers it to the portion of each flux system 
acting as the "side-arcades" (green). The first two panels, t = 4500 and 6250 seconds, 
correspond to  panel (b) in figure 2, the breakout reconnection stage before the eruptive flare 
reconnection. The next four panels, t = 6750,7500,8500, and 10000 seconds are all part 
of panel (c) in figure 2, showing the eruptive-flare opening of the highly sheared low-lying 
field. The simulation as of t = 10000 seconds has not reached the anti-breakout reconnection 
stage shown in panel (d) of figure 2, where the portions of the two flux systems acting as 
"side-arcades" come back together to participate in the gradual phase of the eruptive flare 



reconnection and the rebuilding of the multipolar topology present before the energization 
of the system. The eruptive flare reconnection certainly adds a great deal of azimuthal 
(significantly twisted) flux to  the erupting sheared field, creating a quasi-flux-rope like ejecta. 
However, the complexity of our specified shearing flows creates a highly complex erupting 
structure in which the erupting ejecta field undergoes internal relaxation reconnection as it 
propagates away from the sun, merging the oppositely-sheared components. 

Despite the complex and dynamic field interactions, both within the ejecta itself and 
between the ejecta and the overlying background field system, the density and velocity 
associated with our erupting structure takes on a much more classical appearance. Figure 
8 shows meridional cuts of the plasma number density in the 4 = 0 plane for each of the 
times and perspectives in figure 7. The simulation results produce a clear enhanced density 
font, defining the leading edge or separatrix boundary between the erupting flux and the 
background flux system. 

By t = 10000 s, the cavity region is about a factor 30 less dense than the initial t = 0 
value a t  the same radial distance. Likewise, the enhanced density rim is about 30 times 
denser than the initial background value. Recent forward modeling of CME density struc- 
tures to  produce synthetic line-of-sight coronagraph emission show density enhancements of, 
on average, 7 times background streamer densities are required to  fit the bright edges of a 
number of CME events (Thernisien et al. 2006). Our simulation lacks an inner boundary 
mass flux (necessary if we were modeling solar wind outflow), so the lo3 cavity-to-rim varia- 
tion in density we obtain may be a bit too large, however, during very fast CME events, it is 
unlikely that mass flow could compensate for the very rapid expansion into the heliosphere. 

Figure 9 plots meridional planes of the radial velocity. The shearing motions force a 
significant expansion velocity until the eruptive flare reconnection. Once the flare reconnec- 
tion starts, it quickly becomes the dominant component of the velocity signal. The outward 
portion of the flare reconnection jet fills and accelerates the entire density cavity structure 
seen in figure 8. We also capture the strong downflows associated with the inward portion 
of the flare reconnection jet. Examining the t = 6750 and 7500 s frames, we see the flare 
velocity boost has overtaken the expansion wave and now drives a strong shock, visible as the 
sharp blue-to-red transition in the color map. The leading edge of the velocity lies right over 
the dense outer shell corresponding to  the bright front seen in the coronagraph observations. 
In order to  further quantify the eruption profile we will examine the height-time plot of the ,  
outermost, simply-connected fieldline of the erupting structure. 



3.3.2. Height- Time Profile and Energetics 

Panel (a) of figure 10 plots radial distance h(t) of the separatrix surface separating the 
erupting, highly-twisted field structure from the overlying background flux. This distance is 
measured a t  15" latitude in the plane of symmetry 4 = 0 and corresponds to the location of 
the X-line in the 2.5D simulation (figure 7 in MacNeice et al. 2004). It  is important to  note 
that these distances do not correspond to  the location of a material point or plasma parcel, 
so the velocity of any given fieldline is likely underestimated using this measure. Before the 
flare reconnection kicks in, h(t) is gradually increasing due to  expansion and the onset of 
the breakout reconnection above the sheared field flux. There is a clear break associated 
with the beginning of the flare reconnection and the height-time points after t = 6750 are 
fit well with a constant slope u,,,,~ = 1135.5 km s-'. Figure 10(b) plots v(t) = dhldt, the 
numerical derivative of the height-time points above. Here, we see the velocity increasing 
linearly during the rising and breakout phase (ari,, = 63.6 m s - ~ )  followed by an almost 
step-like increase at the time of the flare reconnection to the average eruption velocity. The 
rapid acceleration phase lasts for 250 seconds and corresponding to  afl,,, = 2966.9 m sd2. 

The magnitude and duration of the 3D breakout rapid acceleration phase is quite con- 
sistent with observational results. For example, Qui et al. (2004) measured an erupting 
filament peak acceleration of 3000 m s - ~ ,  St. Cyr et al. (1999) observed a peak acceleration 
of 3270 m s - ~ ,  and Alexander et al. (2002) and Gallagher et al. (2003) found erupting X-ray 
and EUV features having maximum acceleration on the order of 21000 m s - ~ ,  respectively. 
Recently, Zhang & Dere (2006) cataloged a broad distribution of magnitudes of the rapid 
acceleration phase, from 2.8 m s - ~  to  4400 m s - ~ ,  and derived a scaling law for the peak 
acceleration as a function of the duration of acceleration phase. The Zhang & Dere scaling 
law "predicts" a value of A=2398 m s - ~  for our simulation acceleration phase duration of 
4.17 min (250 seconds) which is in reasonable agreement to our actual afl,,, value. Schrivjer 
et al. (2008) have argued that because during the rapid acceleration phases in erupting 
filament, height observations go like h t3, they are incompatible with almost all CME 
initiation models except those of the helical kink (Torok & Kliem 2005) or torus instabilities 
(Kliem & Torok 2006). Schrivjer et al. scale their torus instability results to a couple of 
observed events and obtain acceleration profiles that reach -1000 m s - ~  for durations of 
~ 1 0  minutes. Bong et al. (2006) argue that because the main acceleration peak occurs after 
the visible opening of the overlying field in an event with breakout topology, that it cannot 
be the breakout mechanism responsible for the CME initiation. However, these results show 
that the acceleration due to the flare reconnection can be quite distinct from the acceleration 
associated with the breakout reconnection expansion and that in 3-dimensions the driven 
flare reconnection can generate a rapid acceleration phase of qualitatively similar magnitude 
and duration as those observed in the fastest filament eruptions. 



Figure 10(c) plots the time evolution of the total free magnetic energy AEM = EM(t) - 
E&,(O) and total kinetic energy EK(t) in the system. The free magnetic energy reaches its 
maximum value a t  t = 6290 s and from panels (a) and (b), the "impulsive" acceleration due 
to  the upwards flare reconnection jet starts sometime between 6500 - 6750 s. The 1000 s 
(16.7 min) interval starting at the time of the maximum free energy includes the last phases 
of the pre-flare runaway breakout reconnection and the initial ("impulsive") phase of the 
eruptive flare reconnection. The magnitude of the change in free magnetic energy over this 
period is 1 EM (7290) - ElW (6290)l = 4.567 x lo3' ergs, while the associated increase in kinetic 
energy EK (7290) - EK (6290) = 8.139 x lo3' ergs. Thus, 17.8% of the available free magnetic 
energy is converted directly into kinetic energy during the interval including the "impulsive" 
phase of the eruption. However, in the subsequent "gradual" phase of the flare reconnection, 
the free magnetic energy continues to  drop and by the end of the simulation, the total change 
in free magnetic energy has reached 7.0 x lo3' ergs with a corresponding total kinetic energy 
of 1.164 x 1031 ergs, or 15.4% of the dissipated free magnetic energy. 

3.3.3. Breakout and Flare Reconnection 

The left panel of figure 11 plots several representative fieldlines illustrating the breakout 
reconnection process at time t=6250 s. The green fieldlines correspond to newly created 
"side-arcade" flux formed by reconnection between the light blue unsheared field above the 
expanding sheared component and the red restraining background flux. The right panel plots 
an isosurface of the $-component of current density at jd = +0.30 statamp ~ m - ~ .  The current 
structure(s) on the solar surface and at the base of the expanding field region are due to  the 
imposed boundary motions but the dome-like sheet that forms on the separatrix boundary 
surrounding the expanding sheared field is a topologically-induced response. Ma,cNeice et al. 
(2004) showed that with sufficient resolution, the axisymmetric simulation breakout results 
were independent of the grid size. For 3-dimensional calculations, we still do not have the 
computational capacity to  perform a similar study, but we expect the same results. Given 
that the mechanism for "triggering" the breakout reconnection is numerical resistivity, future 
work must include characterizing the effects of enhanced resolution on the rate or character of 
magnetic reconnection. It may be possible to mitigate some of the increased computational 
costs through solution-adaptive grid refinement in regions of current sheet formation. 

A snapshot of the eruptive flare reconnection at t=6750 s is shown in figure 12. Both 
panels show the same set of representative flare loops (yellow) and newly reconnected field- 
lines that are becoming highly twisted and part of the erupting flux (white). The left panel 
plots the 4 = 0 meridional plane of radial velocity showing the structure of the outflow 



jets associated with the eruptive flare reconnection. Maximum upwards velocities exceeding 
v, 2 4000 km s-' (comparable to  Alfven speed at this radius) are observed in a narrow sheet 
above the recently formed flare arcade, as well as significant downflows along the flare-loop 
legs (v, 5 -2000 km s-'). The intensity of these flows diminish with time but the flare 
reconnection and the jet structure continues for the duration of the simulation (see figure 7, 
panels (e) and (f)). The right panel shows the 3D equivalent of the well known 2D CHSPK 
eruptive flare current sheet as an isosurface of j+ = -4.5 statamp in orange. While 
we capture the large scale properties, there is so much physical structure at (and below) 
our numerical resolution limit, many important features are still not resolved. For example, 
flare reconnection is known to  be patchy (e.g. Linton & Longcope 2006; Linton et al. 2007) 
and high cadence, high resolution solar observations have shown a wealth of fine structure 
and dynamics, such as coronal downflows (Sheeley et al. 2004), flare ribbon and loop evo- 
lution, and bursty emission in a variety of wavelengths. Also, details of the reconnection 
jet structures, such as the shocks and turbulence formed from the Alfvenic outflows have 
direct implications for flare heating, accelerating solar energetic particles, and a host of other 
related features (see Benz 2008 and references therein). 

4. Discussion 

In the first half of the paper, we discussed the topological evolution of the magnetic 
breakout eruption process and shown that a 3-dimensional system with two polarity inversion 
lines, a separatrix dome, spine-line and a single 3D null point rneets the minimum required 
complexity for the breakout process to operate. In the second half, we presented MHD 
simulation results of a fast breakout CME that reaches an asymptotic eruption velocity 
of - 1100 km s-' within 3 Ro . The eruptive flare onset and impulsive phase generate 
a prompt rapid acceleration phase of afl,, - 2970m s - ~  for 4.2 minutes, in reasonable 
agreement with observations. The bulk of this acceleration is associated with the impressive 
flare reconnection jets, with maximum radial velocities of v, -4000 km s-' upwards and 
-2000 km s-I downwards. Overall, the CME eruption releases 7.0 x lo3' ergs of free magnetic 
energy with 15.4% of that converted into a total kinetic energy of 1.16 x lo3' ergs by the 
end of the simulation. Remarkably complex ejecta fields arise from internal reconnection 
between the oppositely directed shear layers and continued interaction between the erupting 
and overlying fields. Since only 30-50% of in-situ ICME fields show coherent flux-rope 
structures (Gosling 1990; Cane et al. 1997), these results may be an indication of some of 
the processes responsible for producing complex events. Another important feature of the 
simulation results is the lack of large-scale, persistent magnetic islands forming in front of 
the erupting flux rope structure that were seen in previous axisymmetric configurations with 



equatorial symmetry (e.g. MacNeice et al. 2004; van der Holst et al. 2007). These islands 
have the effect of slowing the eruption down, thus despite our latitudinally extended, quasi 
2-dimensional magnetic configuration, having a fully 3-dimensional simulation allows us to 
avoid this undesirable feature. 

While these simulation results show that the magnetic breakout model in 3-dimensions 
can still account for the majority of the large scale properties of fast CMEs, there are still a 
number of weaknesses that will need to be addressed in future work. First, the magnetic shear 
distribution, while mathematically convenient in the calculation of free magnetic energy, is 
generally more complex than the shear observed with vector magnetograms or inverted 
from scalar magnetogram feature tracking. Second, our sunspot structure is too artificial. 
The magnetic configuration does approximate the "narrowness" of erupting filaments and 
their associated shear channels, but the shape is too extended and the field strength ratio 
of our active region to background is too low (25:l compared to typical solar values of 
1000:l). Third, our spherically symmetric solar atmosphere needs to  be replaced with a non- 
uniform distribution so that,  together with the field distribution, the whole system has a more 
uniform, low plasma P. Finally, there is too much structure at the grid scale. Attempting 
to  model a realistic solar case without sufficient resolution runs the risk of losing the most 
important science. Current limitations aside, the results presented herein are encouraging; 
with the magnetic complexity of the simplest, non-trivial 3D field configuration composed 
of basically two dipoles, the magnetic breakout process can produce a fast CME without 
requiring a pre-eruption flux rope of any sort. 

BJL gratefully acknowledges current support from the NSF SHINE program ATM- 
0621725 and additional funding from NASA, the Office of Naval Research (ONR), and 
SSL/UCB participation in the Center for Integrated Space-weather Modeling (CISM) col- 
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hours on a Cray X7'3 at the U.S. Department of Defense ERDC Major Shared Resource 
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Fig. 1 .- Left column, schematic showing the main four stages of topological evolution during 
the axisymmetric (2.5D) breakout CME scenario. Panel (a) shows the initial topology and 
the shear channel, (b) shows the shearing phase required to energize the system and the 
onset of magnetic breakout reconnection at the distorted null line, (c) shows the beginning 
of flare reconnection that starts deep in the shear channel and creates the magnetic flux 
rope, and (d) the anti-breakout reconnection phase that describes the system relaxation and 
topological restoration. Right column, the corresponding fieldline plots from the MacNeice 
et al. (2004) MHD simulation. See text for further details. 



Fig. 2.- Schematic of the topological evolution during the 3D breakout CME scenario 
corresponding to the same four stages described in Figure 1. See text for further details. 



Fig. 3.- Panel (a) shows the initial 3D magnetic field configuration for the MHD simulation 
described in 53.2.1. Magnetic fieldlines are drawn in the symmetry plane and colored in the 
Antiochos et al. (1999) fashion. The thin yellow lines on the solar surface are the two 
distinct magnetic polarity inversion lines. Panel (b) shows the azimuthal extent of the 
elongated active region and the separatrix boundary on the solar surface. Panel (c) shows a 
zoomed-in view of the fieldline connectivity in the vicinity of the spine fieldline (white) and 
the 3D coronal null point (depicted as the yellow isosurface of the plasma 3 = 2000). 



Fig. 4.- The static, non-uniform computational grid used in the MHD simulations. Panel 
(a) shows the full domain, from the solar surface out to 20 RG. Panel (b) shows the highest 
grid resolution, centered on the active region and includes the coronal null point. Panel 
(c) shows the azimuthal extent of the grid refinement regions on the disk face. The radial 
griding is logarithmic; consequently the r : 8 : d, aspect ratio in each cell is approximately 
constant throughout the entire domain. 
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Fig. 5.- The plasma ,3 (diamonds) and Alfven speed (triangles) along a radial cut at Qj = 

0 and 14.75" latitude passing near (but not through) the coronal null point showing the strong 
radial dependence of these parameters in the strong-field filament channel transitioning to 
an approximately constant dependence far from the sun. 
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Fig. 6.- The top contour plot shows v4(0, 4) on the inner boundary (colorscale at lower 
right) of the highly localized shear channels. The arrows indicate the normalized vector 
direction and the black lines are velocity streamlines showing the circular pattern for each 
polarity of the filament channel. The lower plot shows the temporal dependence ~ ( t )  of the 
applied flow field. 



Fig. 7.- Snapshots of the magnetic field evolution during the 3-dimensional breakout erup- 
tion. Representative fieldlines are colored in the Antiochos et al. (1999) fashion correspond- 
ing to the role the various portions of the flux systems play with respect to  the 2.5D scenario. 
The simulation time is given in the upper left corner of each panel and the view is zoomed 
out in the bottom row to show the complex interaction between the erupting and overlying 
field as well as the within the erupting field itself by regions of opposite shear. 



Fig. 8.- Same format as figure 7: showing the 4 = 0 meridional cut of mass density. The 
logarithmic colorscale is shown in the first panel. 



Fig. 9.- Same format as figures 7 and 8, showing the meridional cut of the radial velocity 
component v, . 
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Fig. 10.- Panel (a) plots the quantity h(t), the radial distance of the separatrix surface at 
15" latitude in the plane of symmetry (4 = 0). This is approximately the 3D equivalent of 
the location of the axisymmetric X-line shown in MacNeice et al. (2004). Panel (b) plots 
v(t) = dhldt showing the clear transition from a linearly increasing rising phase velocity 
(ari,, -- 64 m sb2) through a rapid acceleration phase (aA,,, -- 2970 m s - ~ )  toward an 
asymptotic eruption velocity (verUpt -- 1100 km s-I). Panel (c) shows the global magnetic 
(solid) and kinetic (dashed) energy evolution. The free magnetic energy AEM(t)  is defined 
as EAw(t) - Enf(0). The rapid release of stored free magnetic energy is seen coinciding with 
the almost step-function-like increase in kinetic energy. During the 1000 s (16.7 min) time 
interval from t = 6290 to 7290 s, approximately 17.8% of the magnetic free energy drop is 
converted into kinetic energy. 



Fig. 11.- Left panel shows several representative fieldlines at t=6250 s during the breakout 
reconnection phase (panel b in figures 1 and 2). The newly reconnected side-arcade fieldlines 
are shown in green, the unsheared inner-arcade fieldlines are shown in light blue, the highly 
stressed, expanding inner-arcade field is dark-blue, and the overlying flux is shown in red. 
The right panel plots the same fieldlines (from a different perspective) as well as an isocontour 
of j4 = 0.30 statamp ~ m - ~ ,  depicting the current sheet formed along the separatrix boundary 
of the stressed inner-arcade flux system. See text for details. 



Fig. 12.- Left panel, shows the eruptive flare loop geometry at t=6750 s in the flare 
reconnection phase (panel c in figure 1 and 2) along with a semi-transparent meridional 
plane of v, to show the structure of the reconnection jets. At this timestep, the upward 
jet maximum velocities exceed 4000 Ism s-l, while the downward jet contains -2000 km s-I 
maximum flow speeds. The right panel, plots the same fieldlines from a different perspective, 
showing a top-down polar view of the azimuthal extent of the radial current sheet. The 
orange isosurface is of j4 = -4.50 statamp See text for details. 




