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ABSTRACT 

This paper reviews progress that  has been made in obtaining essentially exact solutions to  the nonrelativistic 
three-body problem for helium by a combination of variational and asymptotic expansion methods. The 
calculation of relativistic and quantum electrodynamic corrections by perturbation theory is discussed, and 
in particular, methods for the accurate calculation of the Bethe logarithm part of the electron self energy 
are presented. As an  example, the results are applied to  the calculation of isotope shifts for the short-lived 
'halo' nucleus 6He relative to  *He in order to  determine the nuclear charge radius of 6He from high precision 
spectroscopic measurements carried out at  the Argonne National Laboratory. The results demonstrate that  
the high precision that is now available from atomic theory is creating new opportunities to create novel 
measurement tools, and helium, along with hydrogen, can be regarded as a fundamental atomic system 
whose spectrum is well understood for all practical purposes. 

INTRODUCTION 

The goal of the work presented here is t o  obtain essentially exact theoretical values for the energy levels for 
the entire singly excited spectrum of helium and its isotopes, including all terms up to order a3 Ry, where 
a z 1/137.035999 l l (46)  is the fine structure constant. The achievement of this goal requires accurate 
nonrelativistic eigenvalues, relat,ivistic corrections of order a2 Ry, and quantum electrodynamic corrections 
of order cy3 Ry. Recent advances over the past several years now make it possible to  obtain solutions to  the 
quantum mechanical three- and four-body problem that  are essentially exact for all practical purposes, a t  
least in the nonrelativistic limit. The calculation of the lowest order a2 Ry relativistic corrections is then 
straight forward, but the calculation of the QED corections (especially the Bethe logarithm) has remained a 
long- standing problem in atomic physics. This last problem has also now been solved, as will be described 
in this paper, thereby opening the way to complete calculations up to  order a3 Ry. 

On the experimental side, there is a large body of high precision data available for comparison. The 
particular significance in relation to  the present work is that the theoretical uncertainty in the D-states 
is now so small that  their energies can be taken as absolute points of reference. The measured transition 
frequencies to the lower-lying S- and P-states can then be used to determine the absolute ionization energies 
of these states (see Drake and Martin [I]) ,  and from this the QED energy shifts can be determined. 

The second goal of this work is to  use the comparison between theory and experiment for the isotope 
shift to determine the nuclear charge radius for various isotopes of helium. There is now considerable interest 
in using this method to  measure the nuclear charge radii of of exotic 'halo' nuclei such as 6He and 8 ~ e  first 
discovered by Tanihata 121. As will be seen, this technique provides a unique measurement tool to perform 
nuclear size measurements that  cannot be done in any other way. 
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Table 1: Contributions to the  energy and their orders of magnitude in terms of 2, p / M  = 1.370745624 x 
lo-" and a 2  = 0.532513 5450 x l o p 4 .  

Contribution hlagnitude 
Nonrelativistic energy Z 2  
Mass polarization Z 2 p / M  
Second-order mass polarization Z 2  (p /AJ )2  
Relativistic corrections Z 4 a 2  
Relativistic recoil Z 4 a 2 p / M  
Anomalous magnetic moment Z 4 a 3  
Hyperfine structure z%glp; 
Lamb shift Z 4 a 3 1 n a +  . . .  
Radiative recoil z4a3(ln a ) p / M  
Finite nuclear size Z"(T/.O)~ 

Figure 1: Coordinate system for a helium atom with the nucleus a t  the origin. 

THEORETICAL BACKGROUND 

Table 1 summarizes the various contributions to the energy, expressed as a double expansion in powers 
of a - 1/137.036 and the electron reduced mass ratio p / M  -. l o p 4 .  Since all the lower-order terms can 
now be calculated to  very high precision, including the QED terms of order a3 Ry, the dominant source 
of uncertainty comes from the QED corrections of order a 4  Ry or higher. The comparison between theory 
and experiment is therefore sensitive to  these terms. For the isotope shift, the QED terms independent of 
p/AJ cancel out, and so it is only the radiative recoil terms of order a"/M -. 10-12Ry (-- 10 kHz) that  
contribute to the uncertainty. Since this is much less than the finite nuclear size correction of about 1 MHz, 
the comparison between theory and experiment clearly provides a means t o  determine the nuclear size. 
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Solut ion t o  t h e  Nonrelativist ic Schrodinger Equa t ion  

The  starting point for the calculation is t o  find accurate solutions t o  the  Schrodinger equation for helium. 
Considering first the case o f  infinite nuclear mass, the equation in atomic units is given by 

The usual methods o f  theoretical atomic physics, such as the Hartree-Fock approximation or configuration 
interaction methods, are not capable o f  yielding results o f  spectroscopic accuracy. For this reason, specialized 
methods have been developed. As long ago as 1929, Hylleraas suggested expanding the wave function in an 
explicitly correlated variational basis set o f  the form 

where 7-12 = / r l  - r 2 /  is the interelectronic separation (see Fig. 1 ) .  The  coefficients aijk are linear variational 
parameters, and cu and p are nonlinear variational coefficients that set the distance scale for the wave function. 
The  usual strategy is t o  include all powers such that i + j + k 5 R (a  so-called Pekeris shell), where R is an 
integer. The  inclusion o f  powers o f  7'12, and especially the odd powers, makes the basis set rapidly convergent 
as R increases. The  basis set is proveably complete in the limit R --t cm [3]. 

For states o f  higher angular momentum L ,  the quantity f . 2 )  denotes a vector-coupled product 
o f  spherical harmonics, and the basis set includes a summation over the possible integer values o f  l 1  and 12 

(with 12 constrained t o  be l2  = L - 1 1 )  such that 11 5 L/2. In addition. the nonlinear parameters cu and 
/3 are separately optimized for each set o f  angular momentum terms, and, as discussed in Refs. [4,  5 ,  61, 
it is desirable further to  'double' the basis set so that each set o f  powers { i ,  j ,  k )  is included two (or more 
[7])  times with different values o f  cu and P. For sufficiently large basis sets, the doubling is very important 
because it helps t o  preserve the numerical stability o f  the wave function, it gives improved accuracy for a 
given total size o f  basis set, and it avoids the disasterous loss o f  accuracy that normally sets in for variational 
calculations involving the higher-lying Rydberg states [4, 5 ,  61. 

The  principal computational steps are first t o  orthogonalize the x i j k  basis set, and then t o  diagonalize 
the Hamiltonian matrix H in the orthogonalized basis set so as t o  satisfy the Rayleigh-Schrodinger variational 
principle 

S P ( H - E ) P d r = O .  S (3) 
Finally, a complete optimization is performed with respect t o  variations in the a s  and ps so as t o  minimize 
the energy. 

For high precision calculations, and especially for the istope shift, it is necessary t o  include also the 
motion o f  the nucleus in the center-of-mass (CM) frame. A transformation to  CM plus relative coordinates 
yields the additional - ( p / h I ) V 1  . V 2  mass polarization term in the modified Hamiltonian 

in reduced mass atomic units e2/a,, where a ,  = ( m e / p ) a o  is the reduced mass Bohr radius, and p = 
m , M / ( m ,  + M )  is the electron reduced mass, M is the nuclear mass, and a0 = h2/mee2 is the Bohr radius. 
The  mass polarization term can be treated either by  including it as a perturbation (up  to  second-order), 
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Table 2: Convergence study for the ground state of helium (infinite nuclear mass case) [7]. N is the number 
of terms in the 'triple' basis set. 

n N E(R)  R(R) 
8 269 -2.903 724 377 029 560 058 400 
9 347 -2.903 724 377 033 543 320 480 

10 443 2 . 9 0 3  724 377 034 047 783 838 7.90 
11 549 2 . 9 0 3  724 377 034 104 634 696 8.87 
12 676 -2.903 724 377 034 116 928 328 4.62 
13 814 -2.903 724 377 034 119 224 401 5.35 
14 976 -2.903 724 377 034 119 539 797 7.28 
15 1150 -2.903 724 377 034 119 585 888 6.84 
16 1351 -2.903 724 377 034 119 596 137 4.50 
17 1565 -2.903 724 377 034 119 597 856 5.96 
18 1809 -2.903 724 377 034 119 598 206 4.90 
19 2067 2 . 9 0 3  724 377 034 119 598 286 4.44 
20 2358 2 . 9 0 3  724 377 034 119 598 305 4.02 

Extrapolation cc -2.903 724 377 034 119 598 311(1) 

Korobov [ll] 5200 -2.903 724 377 034 119 598 311 158 7 
Korobov extrap. cc -2.903 724 377034 119 598 311 159 4(4) 

Schwartz [12] 10259 2 . 9 0 3  724 377 034 119 598 311 159 245 194 404 4400 
Schwartz extrap. cc -2.903 724 377 034 119 598 311 159 245 194 404 446 

Goldman 1131 8066 -2.903 724 377 034 119 593 82 
Biirgers et al. j14j 24 497 2 . 0 0 3  724 377 034 119 589(5) 

Baker et al. [15] 476 -2.903 724 377 034 118 4 

or by including it explicitly in the Hamiltonian. The latter procedure is simpler and more direct. and the 
coefficient of the second-order term can still be extracted by differencing [4, 61. A general method for the 
decomposition of this equation was developed many years ago by Bhatia and Temkin [8], and the effects of 
mass polarization studied by Bhatia and Drachman [9] for a range of values of p / M .  These authors have 
also extended the calculation of the second-order mass polarization term for several low-lying states to  the 
He-like ions [lo]. 

As an example, Table 2 shows a convergence study for the very well studied case of the ground state of 
helium [7]. The quantity R in the last column is the ratio of successive differences between the energies. A 
constant or slowly changing value of R indicates smooth convergence, and allows a reliable extrapolation to 
n + oo. The results clearly indicate that convergence to  20 or more figures can be readily obtained, using 
conventional quadruple precision (32 decimal digit) arithmetic in FORTRAN. The very large calculation by 
Schwartz [12], using 104-digit arithmetic, provides a benchmark for comparison. 

ASYMPTOTIC EXPANSION METHOD 

Richard Drachman is largely responsible for the development of the asymptotic expansion method for helium, 
based on a core polarization model [16, 17, 18, 19, 20, 211. It provides a means to give a physical interpretation 
and meaning to these long strings of significant figures for the nonrelativistic eigenvalues, a t  least in the limit 
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Table 3: Variational energies for the n = 10 singlet and triplet states of helium. 

%ate Singlet Triplet 

10 S -2.005 142 991 747 919(79) -2.005 310 794915 611 3(11) 
10 P -2.004 987983 802 217 9(26) -2.005 068 805 497 706 7(30) 
10 D -2.005 002 071 654 256 81(75) -2.005 002 818 080 228 84(53) 
10 F -2.005 000 417 564 668 80(11) -2.005 000 421 686 604 88(26) 
10 G -2.005 000 112 764 318 746(22) -2.005 000 112 777003 317(21) 
10 H 2 . 0 0 5  000039 214 394 532(17) 2 . 0 0 5  000039 214 417416(17) 
10 I 2 . 0 0 5  000016 086 516 1947(3) -2.005 000 016 086 516 2194(3) 
10 K -2.005 000 007 388 375 8769(0) -2.005 000 007 388 375 8769(0) 

Polarizable core Rydberg electron 

Figure 2: Illustration of the physical basis for the asymptotic expansion method in which the Rydberg 
electron moves in the field generated by the polarized core. 

of large L. As shown in Table 3 for the list of states with n = 10, the singlet-triplet splitting goes exponentially 
to zero with increasing L, so that for L = 7 (K-states), the splitting is no longer visible to the 20 figure 
accuracy of the calculations. This indicates that the Rydberg electron can be treated as a distinguishable 
particle interacting with a polarizable core consisting of the nucleus and the inner 1s electron. The leading 
figures in the energies correspond to the simple screened hydrogenic energy 

for n = 10. Here, the -2 is the energy of the inner 1s electron with nuclear charge Z = 2, and the -1/(2n2) 
is the energy of the outer Rydberg electron for the screened nuclear charge Z = 1. For the 10K state, this 
simple calculation accounts for the leading eight significant figures in the energy, and so all the interesting 
physics is contained in the figures that come after the eighth. 

Our objective now is to see how much of this interesting physics after the eighth figure in the energy (for 
K-states) can be understood in terms of the asymptotic expansion method. Figure 2 illustrates the physical 
basis for the core polarization model. Letting x denote the radial coordinate of the Rydberg electron, it 
moves in the asymptotic potential 

2 - 1  
V ( x )  = - - 

x 
+ AV(X) (6) 
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Table 4: Asymptotic expansion for the energy of the lsl0k state of helium. 

Quantity Value 
-Z"2 -2.000 000 000 000 000 00 
- l /(2n2) -0.005 000 000 000 000 00 
~ 4 ( r - ~ )  0 .000  000 007 393 341 95 
c6 (rP6) 0.000 000 000 004 980 47 
c 7 Y 7 )  0.000 000 000 000 278 95 
cs (+) 0 .000  000 000 000 224 33 
~ 9 ( r - ~ i ~  -0.000 000 000 000 002 25 
CIO(T- ) 0.000 000 000 000 003 73 
Second order -0.000 000 000 000 070 91 
Total -2.005 000 007 388 376 30(74) 
Variational -2.005 000 007 388 375 8769(0) 
Difference -0.000 000 000 000 000 42(74) 

-. 3 Hz 

where Z - 1 is the screened nuclear charge, and the polarization potential due to the core is 

For example, c4 = cr1/2, where crl is the dipole polarizability of the core, and the other coefficients are 
similarly related to  the higher multipole moments of the core. Since the core is a one-electron hydrogenic 
problem, all the c, coefficients can be calculated exactly as simple rational fractions [6]. For example, 
crl = 9/(2Z4) a:. 

The screened hydrogenic energy is then given by 

where XI) is first-order perturbation correction to  I xo) due to  AV(x); i.e. it satisfies the perturbation 
equation [22] 

[ho(x) - eol I x1) + AV(x) I xo )  = I  x o ) ( x o  I AV(x) I xo) (9) 

Continuing with the example of n = 10, Table 4 lists the various contributions from the multipole 
expansion for the case L = 7, including the second-order term. The f 3 Hz accuracy of the asymptotic 
expansion is more than sufficient for comparisons with experiment. For low L, the asymptotic expansion 
is much less accurate because the series must be truncated when the terms start increasing. Indeed the  
expectation values ( l /xn)  diverge for n > 2L + 2. However, the accuracy rapidly improves with increasing 
L, and there is clearly no need for direct variational calculations for L > 7. 

Variational Basis Sets for Lithium 

The same variational techniques can be applied to  lithium and other three-electron atomic systems. In this 
case, the terms in the Hylleraas correlated basis set have the form 
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where Y@21t,2, t ,  is again a vector-coupled product of spherical harmonics, and ~1 is a spin function with 
spin angular momentum 112. As for helium, the usual strategy is to  include all terms from (10) such that 

and study the eigenvalue convergence as R is progressively increased. The lithium problem is much more 
difficult than helium both because the integrals over fully correlated wave functions are more difficult, and 
because the basis set grows much more rapidly with increasing 0. Nevertheless, there has been important 
progress in recent years [23, 24, 251, and results of spectroscopic accuracy can be obtained for the low-lying 
states. 

Bhatia and Drachman have also made important progress, in applying the asymptotic expansion meth- 
ods to  the Rydberg states of lithium 126, 27, 281. The calculations in this case are more difficult because the 
'polarizable core' now consists of the nucleus and two 1s electrons, and so its multipole moments cannot be 
calculated analytically. 

RELATIVISTIC CORRECTIONS 

This section briefly summarizes the lowest-order relativistic corrections of order a2 Ry, and the relativistic 
recoil corrections of order cr2p/MRy. The well-known terms in the Breit interaction [29] (including for 
convenience the anomalous magnetic moment terms of order a3 Ry) give rise to  the first-order perturbation 
correction 

where 9 J is a nonrelativistic wave function for total angular momentum J = L + S and Hrel is defined by 
(in atomic units) 

with y = a l (2n) .  The factors of (p/me)4 = (1 - p / ~ ) ~  and ( p / m , ) ~  = (1  - 1*./hf)3 arise from the mass 
scaling of each term in the Breit interaction, while the terms A2 and A,, are dynamical corrections arising 
from the transformation of the Breit interaction to  CM plus relative coordinates [30]. These latter terms are 
often not included in atomic structure calculations, but they make an important contribution to  the isotope 
shift. The explicit expressions for the spin-independent operators are 

and the spin-dependent terms are 
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Qi 

Figure 3: Feynman diagram for the electron self energy. 

Finally, the relativistic recoil terms are [30] 

1 A2 = pZn2  PI + ~ 2 )  PI + -brl [rl (PI + P ~ ) ] P I  
2 7-1 r1 

It is then a relatively straight forward matter to  calculate accurate expectation values for these operators. 
Also, asymptotic expansions have been derived for the matrix elements and compared with the direct vari- 
ational calculations, as discussed in Ref. [6]. 

QED CORRECTIONS 

For a many-electron atom, the total QED shift of order cu3 Ry consists of two parts-an electron-nucleus part 
(the Kabir-Salpeter term [31]), and an electron-electron term EL,2 origirlally obtained by Araki [32] and 

Sucher [33]. The EL,2 term is relatively small and stright-forward to  calculate. The principal computational 
challenges come from the EL,i term given by (in atomic units) 

where P(1sne) is the two-electron Bethe logarithm arising from the emission and re-absorption of a virtual 
photon (see Fig. 3). It is the logarithmic remainder after mass renormalization, and is defined by 

The foregoing equations are virtually identical to  the corresponding one-electron (hydrogenic) case, except 
that there the &function matrix elements can be replaced by their hydrogenic value 
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Figure 4: Differential contributions to the Bethe logarithm for the ground state of hydrogen. Each point 
represents the contribution from one pseudostate. 

The sum in the denominator of (23) can be completed by closure with the result 

where p = pl + p2. The numerator is much more difficult to  calculate because the sum over intermediate 
states (including an integration over the continuum) cannot be performed analytically, and a sum over 
pseudostates nearly diverges a t  high energies. Schwartz [34] transformed the numerator to read 

However, this is slowly convergent, and expensive in computer time since a matrix diagonalization must 
be performed at each integration point. Despite this, results of useful accuracy for the lowest-lying S- and 
P-states have been obtained by this method in Refs. [35], [36], and [37]. 

An alternative method based on a discrete variational representation of the continuum in terms of 
pseudostates has been developed by Drake and Goldman [38]. The method is simplest to  explain for the 
case of hydrogen. The key idea is to define a variational basis set containing a huge range of distance scales 
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Table 5: Convergence of the Bethe logarithm P(1s) = ln(ko/R,) for hydrogen. R, = 3.289 841 960360(22) x 
10' MHz is the Rydberg constant. 

R N p( l s )  Differences Ratios 
2 3 2.73448191727230174149 
3 6 2.94877219077044909822 0.21429027349814735672 
4 10 2.97975301862169611861 0.03098082785124702039 6.917 
5 15 2.98361449929795351803 0.00386148067625739942 8.023 
6 21 2.98407183714911362800 0.00045733785116010997 8.443 
7 28 2.98412247036420809592 0.00005063321509446792 9.032 
8 36 2.98412792735460886871 0.00000545699040077279 9.279 
9 45 2.98412849201006208099 0.00000056465545321228 9.664 

10 55 2.98412854946585020174 0.00000005745578812075 9.828 
11 66 2.98412855514977775545 0.00000000568392755370 10.108 
12 78 2.98412855570645173753 0.00000000055667398208 10.211 
13 91 2.98412855575986426711 0.00000000005341252957 10.422 
14 105 2.98412855576496736061 0.00000000000510309350 10.467 
15 120 2.98412855576544766988 0.00000000000048030928 10.625 
16 136 2.98412855576549294823 0.00000000000004527834 10.608 
17 153 2.98412855576549717245 0.00000000000000422422 10.719 
18 171 2.98412855576549756974 0.00000000000000039729 10.633 
19 190 2.98412855576549760688 0.00000000000000003714 10.697 
20 210 2.98412855576549761038 0.00000000000000000351 10.594 
Extrap. 2.98412855576549761075 

according to: 
~ i , j  = ri exp(-ajr)  cos(O), 

with j = O , l ,  . . . ,  0 - l , i = O , l ,  . . . ,  R - j - 1 , a n d  

Thus, each increase in R introduces another set of terms containing different powers of r ,  but with a distance 
scale l/aJ that is approximately a factor of 10 smaller than the previous one (a number close to  10 happens to  
be the variational optimum). For example, for p-states x0,20 Y e ~ ~ ( 1 0 ~ ~ r )  cos 0. As shown in Fig. 4, this has 
the effect of pushing the eigenvalue spectrum up to  enormously high energies far above the few tens of atomic 
units that one would nornlally expect for a variational basis set. The number of elements is N = R(R+ 1)/2. 
One then follows the usual procedure of orthogonalizing the basis set, and then diagonalizing the Hamiltonian 
to generate a set of N pseudostates that can be summed over to  calculate the Bethe logarithm. 

As an example, for the ground I s  state of hydrogen, one would generate a set of pseudostates with 
p-symmetry, and then calculate the dipole transition integrals in Eq. (23). An additional trick to  speed 
convergence is to  include in the basis set terms that behave as rl-' a t  the origin for pseudostates of angular 
momentum 1. Such terms of course do not contribute to the exact wave functions of angular momentum 
1. but they do contribute to the effective Green's function that the sum over intermediate states represents 
(see Ref. [38] for further details). The results in Table 5 demonstrate that the Bethe logarithm calculated in 
this way converges to the known result for the I s  ground state of hydrogen to 20 figure accuracy. Figure 4 
shows the differential contributions to  the Bethe logarithm from each pseudostate. It is clear that  extremely 
high energies are needed to  capture the majority of the Bethe logarithm. The basis set has good numerical 
stability, and standard quadruple precision (32 decimal digit) arithmetic is sufficient for the example shown. 
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Table 6: Bethe logarithms ln(ko/Z2R,) for He-like atoms, from Ref. [38] (see also Ref. [39]). 

State 2 = 2  2 = 3  2 = 4  2 = 5  Z = 6  
1 'S 2.983 865 9(1) 2.982 624 558(1) 2.982 503 05(4) 2.982 591 383(7) 2.982 716 949(1) 
2 'S 2.980 118 275(4) 2.976 363 09(2) 2.973 97698(4) 2.972 388 16(3) 2.971 266 29(2) 
2 3S 2.977 742 36(1) 2.973 851 679(2) 2.971 735 560(4) 2.970 424 952(5) 2.969 537 065(5) 
2 'P 2.983 803 49(3) 2.983 186 lO(2) 2.982 698 29(1) 2.982 340 18(7) 2.982 072 79(6) 
2 3P 2.983 690 84(2) 2.982 958 68(7) 2.982 443 5(1) 2.982 089 5(1) 2.981 835 91(5) 
3 'S 2.982870 512(3) 2.981 436 5(3) 2.980455 81(7) 2.979 778 086(4) 2.979 289 8(9) 
3 3S 2.982 372 554(8) 2.980 849 595(7) 2.979 904 876(3) 2.979 282 037 2.978 844 34(6) 
3 'P 2.984 001 37(2) 2.983 768 943(8) 2.983 584 906(6) 2.983 449 763(6) 2.983 348 89(1) 
3 3P 2.983 939 8(3) 2.983 666 36(4) 2.983 479 30(2) 2.983 350 844(8) 2.983 258 40(4) 
4 'S 2.983 596 31(1) 2.982 944 6(3) 2.982 486 3(1) 2.982 166 154(3) 2.981 932 94(5) 
4 3S 2.983 429 12(5) 2.982 740 35(4) 2.982 291 37(7) 2.981 988 21(2) 2.981 772 015(7) 
4 'P 2.984 068 766(9) 2.983 961 O(2) 2.983 875 8(1) 2.983 813 2(1) 2.983 766 6(2) 
4 3P 2.984 039 84(5) 2.983 913 45(9) 2.983 828 9(1) 2.983 770 1(2) 2.983 727 5(2) 
5 'S 2.983 8574(1) 2.983 51301(2) 2.983 267901(6) 2.983 094 85(5) 2.982 968 66(2) 
5 3S 2.983 784 02(8) 2.983422 50(2) 2.983 180677(6) 2.983 015 17(3) 2.982 896 13(2) 
5 'P  2.984 096 174(9) 2.984 038 03(5) 2.983 992 23(1) 2.983 958 67(5) 2.983 933 65(5) 
5 3P 2.984 080 3(2) 2.984 014 4(4) 2.983 968 9(4) 2.983 937 2(4) 2.983 914 07(6) 

Bethe Logarithms for Helium and Lithium 

The basis sets for helium and lithium are more complicated in detail but the principles are the same. In each 
case the Bethe logarithm comes almost entirely from virtual excitations of the inner 1s electron to ps ta tes  
lying high in the photoionization continuum, and so the basis set must be extended to  very short distances 
for this particle. The outer electrons are to  a good approximation just spectators to these virtual excitations. 

Results for the low-lying states of helium and the He-like ions are listed in Table 6 (see also Korobov 
[39]). In order to  make the connection with the hydrogenic Bethe logarithm more obvious, the quantity 
tabulated is In(ko/Z2R,). The effect of dividing by a factor of .Z2 is to reduce all the Bethe logarithms to  
approximately the same number P(1s) = 2.984 128 556 for the ground state of hydrogen. It is convenient to  
express the results in the form P(1snL) = ,3(ls) + Ap(nL)/n3, where Ap(nL) is a small number that tends 
t,o a constant at the series limit. 

Because of the many contributions of Richard Drachman to  the core polarization model and the as- 
ymptotic expansion method, it is especially appropriate for this volume to discuss the asymptotic expansion 
for Ap(nL). Just as for the energy, the Rydberg electron induces corrections to the Bethe logarithm for the 
1s electron corresponding to  the various multipole moments of the core, with the leading term being the 
dipole term 0 . 3 1 6 2 0 5 ( 6 ) ( ~ - ~ ) / 2 ~  [40, 411. The complete expression is 

where the P(n1) are hydrogenic Bethe logarithms [42], and Gh,P(lsnl) takes into account contributions from 
the higher multipole moments. A least squares fit to  direct calculations up to  L = 6 and n = 6 for helium 
yields the results [43] 

6h ,p( l~n l  'L) = 95.8(8)(~--~)  - 845(19)(rP7) + 1406(50)(r-s, (30) 
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Table 7 :  Residual two-electron Bethe logs Lh,P(lsnl) .  

State n 3 A p ( l s n l )  Least squares fit Difference 
3 l D  0 .00000108(4)  
3 3D 0.000 181 74(5)  

a Corresponds to an  energy uncertainty of 3~14  Hz. 

For example, for the l s4 f  ' F  state, P(4 ' F )  = 2.984127 1493(3). As can be seen from the comparison in 
Table 7 ,  for higher L the asymptotic expansions reproduce the  direct calculations to  within the accuracy of 
the calculations. 

The results as a function of Z can be represented by the 1 / Z  expansion 

The first few c, coefficients can be estimated from a least-squares fit t o  the calculated values of P(1snl)  up 
to Z = 18, resulting in the equations 
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Table 8: Comparison of Bethe Logarithms for lithium and its ions. 

Atom Li(ls22s) Li(ls23s) Li+(ls2) Lif+( ls)  

The leading coefficient on the right-hand-side is just the quantity (P( ls)  + P(ne)/n3)/(1 + 6e,o/n3) from 
(32). These equations reproduce the directly calculated values to  within the accuracy of the calculations. 
As a check, the leading cl terms inside parentheses for the low-lying states agree with the corresponding 
coefficients calculated by perturbation theory by Goldman and Drake [44] (see Ref. [38] for further details). 

As a final remark, Table 8 compares the Bethe logarithms for the two lowest S-states of lithium with 
those for the Li-like ions Lif ( l s2  IS) and Li++(ls 2S). The comparison emphasizes again that  the Bethe 
logarithm is determined almost entirely by the hydrogenic value for the 1s electron, and is almost independent 
of the state of excitation of the outer electrons, or the degree of ionization. 

APPLICATIONS TO NUCLEAR SIZE MEASUREMENTS 

As stated in the Introduction, one of the goals of this work is to use the comparison between theory and 
experiment for the isotope shift to  determine the nuclear charge radius for various isotopes of helium and 
other atoms. One of the most interesting and important examples is the charge radius of the 'halo' nucleus 
'He. For a light atom such as helium, the energy shift due to the finite nuclear size is given to an excellent 
approximation by 

where ?, is the rnls nuclear charge radius. If all other contributions to the isotope shift can be calculated t o  
sufficient accuracy (about 100 kHz) and subtracted, then the residual shift due to the change in F,  between 
the two isotopes can be determined from the measured isotope shift. The theory of isotope shifts, including 
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Table 9: Contributions to  the 'He - 4He isotope shift (MHz). 

Contribution 2 3s1 3 3 ~ 2  2 3 ~ 1  - 3 3 ~ 2  

SEnr 52 947.324(19) 17549.785(6) 35 397.539(16) 
/JIM 2 248.202(1) -5 549.112(2) 
( ~ 1 A . f ) ~  -3.964 -4.847 
a2p/hf  1.435 0.724 

~EEuc -1.264 0.110 
a3p/At,  EL,^ -0.285 4 . 0 3 7  
a3p/fi1,  EL,^ 0.005 0.001 
Total 55 191.453(19) 11 996.625(4) 
~ x ~ e r i m e n t ~  
Difference 

aAssumed nuclear radius is r , ( ' ~ e )  = 2.04 fm. 
b ~ a n g  et al. [46]. 

relativistic recoil and radiative recoil contributions, is discussed in detail in Ref. [45], and will not be repeated 
here. Instead, we show as an example in Table 9 the various calculated contributions to  the isotope shift for 
the ls2s  3S1 - ls3p 3P2 transition of 'He relative to  'He. The corresponding experimental value was obtained 
in a remarkable experiment performed at the Argonne National Laboratory by Z.-T. Lu and collaborators 
[46], using the techniques of single-atom spectroscopy to  trap the short-lived 6He nuclei (tl12 = 0.8 s) in the 
metastable l s2s  3S1 electronic state. 

Each term in the table represents the energy difference between 6He and 4He with nuclear masses of 
6.018 8880(11) u and 4.002 603 250(1) u respectively. The first entry 6E,, represents the 'normal' isotope shift 
due to the common mass scaling of all the nonrelativistic energies in proportion to p lm,  = 1 - plfi l ,  and the 
second entry is the 'specific' isotope shift due to  mass polarization, calculated as a first-order perturbation. 
The remaining entries represent important corrections to  these dominant terms. The third entry of order 
(p/M)2 comes from second-order mass polarization, and the next term of order a 2 p / M  Ry is the relativistic 
recoil term. It contains contributions from the mass scaling of the terms in the Breit interaction, as well as 
cross-terms with the mass polarization operator, and the mass dependent Stone terms ( rn , /n / l ) (~z  + A,,) 
in Eq. (13). The term SE,,, is the finite nuclear size correction for an assumed nuclear charge radius rc = 

2.04 fm for 6He, relative to the reference value r, = 1.673(1) fm for 4He [47], Finally, the t,wo terms of 
order a3p/fiI Ry denote the mass-dependent parts of the electron-nucleus   EL,^) and electron-elect'ron  EL,^) 
QED shift, including recoil [50] and mass polarization corrections. The key point is that  the uncertainty in 
the much larger mass-independent part of the QED shift (tens of MHz) cancels when the isotope shift is 
calculated. The residual uncertainty of only 16 kHz shown in Table 9 is then determined primarily by the 
uncertainty in the nuclear mass of 'He, rather than the atomic physics calculations. 

Since the goal of the experiment is to determine the nuclear charge radius for 'He, the final step is 
to  adjust r, so as to eliminate the small discrepancy of 0.046(56) MHz shown in Table 9. The various 
contributions to  the isotope shift in Table 9 can be collected together and expressed in the form 

 his value is based on measurements of the Lamb shift in muonic helium, but attempts to  reproduce the measurement have 
not proved successful, as discussed by Bracci and Zavattini [48]. The consistent, but less accurate value 1.676(8) fm has been 
obtained from electron scattering [49]. If the electron scattering value is used for 4He, then the size of the error bars for the 
other helium isotopes increases in proportion, but the results do not otherwise change significantly. 
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Figure 5: Comparison of the point-proton nuclear charge radius .F, for 6He with other measurements and 
theoretical values. 

The adjusted nuclear charge radius is then F , ( ~ H ~ )  = 2.054(14) fm. 

The significance of this result in comparison with other measurements and calculations is illustrated in 
Fig. 5. "he first important point is that no other method of measurement is both independent of nuclear 
structure models, and capable of yielding sufficient accuracy to  provide a meaningful test of theory. Ref. 
[53] was obtained from nuclear reaction cross sections, and Ref. [54] was extracted from elastic scattering 
from protons (in water). Second, the accuracy is sufficient to  rule out all but two of the cluster calculations. 
Refs. [55, 56, 571 describe "e in terms of a single (a  + n + n) channel, but inclusion of the additional ( t  + t )  
channel in Refs. 158, 591 produces a substantial disagreement. Also, the ab initio calculation based on the 

3For comparison with theory, it is customary to express the calculated values in terms of an effective rrns radius_Fp corre- 
sponding to  a point-like proton and neutron, which is related to the rms charge radius by F: = Fg + Rg + ( N / Z ) R ~ ,  where 
Rp = 0.895(18) fm [51] is the rms charge radius of the proton, R: = -0.116(5) fm2 [52] is the mean-square charge radius of 
the neutron, and N and Z are the neutron and proton numbers. 
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no-core shell model [60] is in poor agreement. The best agreement is with the ab initio quantum Monte Carlo 
calculations of Pieper and Wiringa [61, 621 based on the AV18 two-body potential and the IL2 three-body 
potential, while ot'her versions of the model potentials do not agree. The comparison with our value of F,  
obtained by the isotope shift method is therefore capable of distinguishing amongst the various possible 
candidates for the effective low-energy nucleon-nucleon interaction potential. 

SUMMARY AND CONCLUSIONS 

The principle message of this paper is that the helium atom and other quantum mechanical three-body 
systems can be solved essentially exactly for all practical purposes in the nonrelativistic limit, and there is a 
systematic procedure for calculating the relativistic and other higher-order QED corrections as perturbations. 
The solution of the problem of calculating Bethe logarithms means that the theoretical energy levels are 
complete up to  and including terms of order cu3 Ry. Both Aaron Temkin and Richard Drachman have 
had a profound influence on the field through their study of variational methods and electron scattering 
phenomena. As shown here, Drachman's asynlptotic expansion methods are of key importance in extending 
the variational results to  cover the entire spectrum of singly-excited states. In fact, the accuracy of the 
asymptotic expansion method increases so rapidly with increasing L that variational calculations become 
completely unnecessary for L > 7. 

As a consequence of these advances, helium now joins the ranks of hydrogen and other two-body systems 
as examples of fundamental atomic systems. The high precision theory that is now available creates new 
opportunities to develop measurement tools that would otherwise not exist. One such example discussed 
here is the determination of the nuclear charge radius for the halo nucleus "e. This opens up a new area of 
study a t  the interface between atomic physics and nuclear physics, and it provides important input data for 
the determination of.effective nuclear forces. Other similar experiments have been performed on the lithium 
isotopes [63], including the halo nucleus l l ~ i  [64], and further work is in progress on ' ~ e  a t  Argonne and 
''Be a t  GSI/TRIUMF. 
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