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SEE Rate Estimates and Confidence 
[Ladbury, NSREC 2007): Estimating confidence level of SEE rate 
- SEE numbers fluctuate about a mean, m, according to Poisson statistics 

P(P, n)  = Pn ~xP(-  P X  (1) 
- Expected # of SEE for LET, 

pi = F,oi = Fioli, (1 - exp(-( (LET; - L E T ~ ~ ~ ) S  )) (2) 
- Use Likelihood to find best-fit and confidence contours of parameters: 

s,~,,,, LETo, W, s 
n 

L = n P ( P ~ , ~ , )  
i=l 

( 3 )  

- Use Figure of Merit to indicate parameters likely to give high rates 
- Highest CREME96 rate for these 10 combinations gives WC rate at CL 

Unfortunately, CREME96 won't work for many State of the art parts 
Can we extend this technique beyond CREME96? 
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Where does CREME96 break down? 

What are possible fixes? 
How do we decide on a new model? 
- Do we even need to decide on a single model? 

How do we compare results across models? 

Charge collection volume not RPP 
o vs. LET curves may not follow a Weibull form (e.g. no saturation) 

Failure of LET concept and new charge generation mechanisms 
- May change expression for mean and/or add new error sources 
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CREME96 Rate calculation 
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"Son of CREME96" Rate calculation 
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Rate Estimation Fidelity: A Series of Nested Models 
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Choosing from many models 
Likelihood, L, can only compare modes w/ same complexity 
- More complicated models (> # parameters, k) give better fits 

Example: Quadratic fit at least as good as a linear fit-even for linear data 

lnformation Theory approach 
- Hirotsugu Akaike's lnformation Criterion (AIC) 
- Asked: Given TRUE model, what is information lost as we move away? 
- Result: AIC = 2(k - In L), k =# of parameters (4) 

- For small datasets use corrected form 

AIC, = 2(k - In L) + 2k(k + 1) /in - - , n =#of parameters (5) 

Allows comparisons of models wl  different complexity 
- Model w/ smallest AIC+most predictive power (favors simpler models) 
- See Akaike, H., "A New Look at the Statistical Model Identification," IEEE 

Trans. Automatic Control 19 (6): 71 6-723 (1 974) 
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What AIC Tells Us About Model Optimalit 
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AIC undefined for n<k+2 
Complex model must give MUCH BETTER fit than simple one 
- Penalty Increases quadratically with # of parameters 
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Handling non-RPP Angular Dependence 

Angular dependence emerges 
naturally from physical model, 
but we may be insufficient 
without fitting to test data. 

(LET,@)-o,(LET,,O)= ol0cos (0) 
- fit m, to find m(LET)-or- 
- use m,+O only when it is important 

Either way # model parameters, k, increases 

P = 2 k +  
2k(k + 1) 
n - k - 1  Collected? 
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Monte Carlo: Developing Models from Data 

Cross Section Without Manufacturer-supplied model: 

O.OE+OO 4.OE-05 8.OE-05 1.2E-04 Warren et al. [TNS 8/07, p. 898.1 
o - LETo determines Qcrit 

- Increase in o gives thickness of new 
sensitive vol. 

20 - LET,/ LET, determines charge collection 
efficiency for ith sensitive vol., E, 

- Fit o vs. LET to Weibull 
40 Similar to usual CREME approach 

LET - Still subject to Poisson errors 
- Amenable to IikelihoodlAlC treatment 

60 
except 
- Cannot assume effective LET 

80 - # of sensitive volumes may depend on 
when fit saturates and desired accuracy 

100 
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How much must Likelihood Improve? 
Remember: AIC, depends on In(L) 
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Verifying a Monte Carlo Rate 

Rate calculated done by Monte Monte Carlo predicts pi SEE 
Carlo simulation wl  CAD model counts for flux, F,, at LET,, E,, 
Verification: Look at model incident @ angle 0,. Observed=N, 
predictions vs. E, LET, 0... - How Significant is disagreement? 

Poisson(pi,Ni) 
Other sources of error? 

- MBU, New error modes, etc.? 

Do we need to modify our model? 
- Do error trends tell us how? 

Angle? Energy? 

Frontside vs. Backside? 

Can also look at multiple models 
- over uncertainties over device 

parameters 
- AlCc selects models that fit data 

most efficiently 
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Akaike Weights and Model Averaging 

Introduce Akaike Weights: w = exp( 0.5*AIC , )  

C exp( O.S*AIC,  ) 
I 

Model Averaging: fi = WiRi Wj measures degree of 
i support in (0,) for Model M. 
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Bounding Rates Using AIC 

SEE rate @ confidence level 
CL defined by highest rate 
over all parameters with 
likelihood within 60 of best 

Use AIC to bound rate across 
models as well as across 
parameter values. 

Ex: M,=BF, M, wlin CL, MI, M, outside CL+R,,=MAX(R,,R,) 

Conclusions 
Statistical Methods outlined in [Ladbury, TNS20071 can be 
generalized for Monte Carlo Rate Calculation Methods 
Two Monte Carlo Approaches 
- Rate based on vendor-supplied (or reverse-engineered) model 

SEE testing and statistical analysis performed to validate model 

- Rate calculated based on model fit to SEE data 
Statistical analysis very similar to case for CREME96 

Information Theory allows simultaneous considerationof multiple 
models with different complexities 
- Model with lowest AIC usually has greatest predictive power 
- Model averaging using AIC weights may give better performance if 

several models have similar good performance 
- Rates can be bounded for a given confidence level over multiple 

models, as well as over the parameter space of a model 
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