
1 Flight Software Design and On-
Orbit Maintenance

Alexander C. Calder
Flight Software Sustaining Engineering Group
November 5,2007

PlrP
rdr

E X P E R I E N C E . RESULTS.

Introduction

Why modify FSW in flight?
-Work around hardware problems on orbit
- Correct software problems missed pre-launch
- Enhance software capabilities during mission

Aspects of FSW design affecting maintainability
- Resource margins
- Linking: static v. dynamic
- On-board file systems
- Parameter setting: table-driven v. command driven

Methods for in-flight FSW modification
Case studies

FSW Design: Resource Margins

Memory
- Modified code = bigger code (usually)
-GSFC Code 582 recommends at least 20% margin on memory

that can be written in-flight

Telemetry
- Modified code may add new telemetry
- Need:

Spare space within packets
Capacity to add new packets
Bandwidth margin

FSW Design: Linking

Static Linking
-Code built as absolute executable image
- FSW component locations fixed by linker
- No symbol table needed
- Patch capability requires spare space in image
- Flight memory image exactly duplicable on ETU

Dynamic linking
-Application code built as relocatable module(s)
- Module locations assigned by OS at runtime
-Symbol table maps modules to locations
- Flight memory image cannot be exactly duplicated on ETU

radeoff:
Requires different maintenance approach
Offers potentially greater flexibility

FSW Design: File Systems

To be really useful, file system (if there is one) should
support:
- File creation & deletion
- File copy & move
- Directory structure
- Directory creation & deletion

FSW Design: Parameters

Parameter setting via command is convenient
Parameter setting via table load supports configuration
control
Tradeoff: operational convenience v. configuration control

Methods for FSW Modification In-flight
Statically Linked Code
- Inline Patch
- Jump-Logic-Return Patch
- Task Replacement

Dynamically Linked Code
- Task Replacement
-Adding a New Module
- Function Replacement

Load New Image & Reboot

lnline Patch

Overwrite one or a few words in executing RAM image
Can't add new code

-Change must fit within existing code

Feasible for:
-Change to a hardcoded constant
-Change to one or a few machine instructions

Caveat: Is the target instruction cached?

Jump-Logic-Return

Jump from existing code to new code, then return to
existing code
Can be done at source code level (e.g. in C) by replacing a
function
- New function loaded to unused memory
-Calls to old function patched inline to call new function

Requires free space built in to FSW image

Task Replacement (Static)

Halt task, load new version, restart task
-Task must be designed to stop & restart cleanly (no memory

leaks, broken pipes, etc.)
-TasWfault management must permit task to stop & restart
-Overwrite task in place

Requires each task have its own spare memory

- Leave old task in place
Requires spare memory somewhere big enough to accommodate
new task

-If task can't be restarted independently, FSW has to be
rebooted

Task Replacement (Dynamic)

Halt task, load new version, restart task
- Uses OS task management & file system
-Task must be designed to stop & restart cleanly (no memory

leaks, broken pipes, etc.)
-Tasklfault management must permit task to stop & restart
- Each task image should reside in its own file
- File system should be flexible

Allow multiple versions of task files
Allow creation/deletion/concatenation of files

Adding a Module

Some OS (e.g., VxWorks) can load a separate executable
module
Module may not execute automatically when loaded

-Can be spawned as a task from OS shell
- Functions in module can be invoked from OS shell

Module's global symbols (function names, global variables)
added to OS symbol table when loaded
Module can access FSW globals via symbol table

Function Replacement

Achieve the effect of a jump-logic-return in a dynamically
Iin ked system
Function addresses not known a priori
Addresses must be obtained from symbol table

Load New Image & Reboot

May be necessary if FSW architecture precludes other
methods
Uplink may take multiple passes over several days
Requires reboot of processor for changes to take effect
Reboot probably puts spacecraft in safehold
- Disrupts normal mission ops
-May pose risk to sensitive instruments

Case Study 1 : Jump-Logic-Return
Adding an In-flight Timing Diagnostic on Space Technology 5

Digital Sun Sensors (DSS) on ST5 reported multiple
spurious sun pulses
Accurate diagnosis required precise timing data on DSS
ISR task execution
All FSW tasks had calls to timing diagnostic output functions
used during development
Patch added a new function to accumulate timing data for
subsequent dump to ground
Existing diagnostic output functions patched to call new
function
Code is written in C and is statically linked

Case Study 1 : Jump-Logic-Return
Memory Map of ST5 FSW Image

Size
1.3 MB

557kB
846 kB

4.2MB
270 kB

750 kB

Start Address
0x80020000

0x801 749DO
0x80200000

Ox802D3AEC
0x80700000

Ox80743904

End Address
0x801 749CF

Ox801FFFFF
Ox802D3AEB

Ox806FFFFF
Ox807439D3

Ox807FFFFF

Description
0s & FSW
Code
Sparespace
Initialized &
Uninitialized
FSW Data
SpareSpace
OS Kernel
Code & Data
Free Memory
Pool

Case Study 1 : Jump-Logic-Return
As-Launched Source Code for Timing Diagnostics

void OSPerfLog - entry(u - dword id)
{

OS - write - io - word(id, 1);
1
void OSPerfLog - exit(u - dword id)
{

OS g write - io - word(id, 0);
1

Case Study 1 : Jump-Logic-Return
As-Launched Disassembly for Timing Diagnostics

M 8 0 1 6 f c 8 8 : 24050001 l i $a1 , I
M 8 0 1 6 f c 8 c : OcO5c3f4 jal 801 70fdO
<CIockRate+Ox7f5ff4dO>
M 8 0 16fc90: 00000000 noP

M 8 0 1 6 f c c 4 : 00002821 move $a1 ,$zero
M 8 0 1 6fcc8: OcO5c3f4 jal 801 70fdO
<CIockRate+Ox7f5ff4dO>
M 8 0 1 6fccc: 00000000 noP

Case Study 1 : Jump-Logic-Return
Modified Source Code for Timing Diagnostics

void OSPerfLog - entry(u - dword id)
I
b

OSPerfLog - add(id, 1);
1
void OSPerfLog - exit(u - dword id)
I
1

OSPerfLog - add(id, 0);

Case Study 1 : Jump-Logic-Return
Modified Disassembly for Timing Diagnostics

M 8 0 1 6fc88: 24050001 l i $a1 ,I
M 8 0 1 6 f c 8 c : OcOcOOOO jal 80300000
<CIockRate+Ox7f78e500>
M 8 0 1 6 f c 9 0 : 00000000 noP

M 8 0 1 6 f c c 4 : 00002821 move $a1 ,$zero
M 8 0 1 6fcc8: OcOcOOOO jal 80300000
<CIockRate+Ox7f78e500>
M 8 0 1 6fccc: 00000000 noP

Figure of ~ e r i t (FOM) task on SwifUBurst Alert Telescope
(BAT)

Dynamically linked code modules with flexible file system
Uplink steps
- Break new FOM task object into multiple files
- Uplink files over several passes
-Concatenate files into one task object file
-Stop old FOM task
- Load new FOM task to RAM from object file
-Start new FOM task

On-board startup script modified to start new FOM task in
event of reboot
Old FOM task still present as object file

Case Study 3: Patching Dynamically Linked Code

A proof-of-concept experiment using SwifVBAT FSW lab
Uses symbol table features of VxWorks
Test function:
#include "dummyfunc. h"
void rundummy()

Case Study 3: Patching Dynamically Linked Code

#include estdio. h>
#include "dummyfunc. h"
int myvalue=1984;

void dummyfunc() {
sy shellstream->write("I am a C function dummyfuncl\n");
sy-shellstream->write("myvalue - is: %d\nW, myvalue);

1

#include estdio. h>
#include "dummyfunc. h"
void dummyfunc2() {

sy shellstream->write("I am another C function dummyfunc2\n");
sy-shellstream->write("myvalue=%d\n", - myvalue);

1

Case Study 3: Patching Dynamically Linked Code

Fragments from function patchitlo:
Declarations
#define BL MASK 0x48000001
#define SX-MASK Ox03FFFFFF
char *dummyfunc name = "dummyfunc Fv";
char *dummyfunc? name = "dummyfunz - Fv";
char *call function-name = "rundummy - Fv";
char *wh&eis dummyfunc = NULL;
char *whereis-dummyfunc2 = NULL;
char *whereismtarget = NULL;
char *whereiscall function = NULL;
unsigned long intbranch to old;
unsigned long int branch-to-new; - -
unsigned long int target - offset = Ox000C;

Case Study 3: Patching Dynamically Linked Code

Get function addresses
symFindByName(sysSymTbl, dummyfunc name,
&whereis - dummyfunc, &dummyfunc - symtfpe);

symFindByName(sysSymTbl, dummyfunc2 name,
&whereis - dummyfunc2, &dummyfunc2 - symiype);

symFindByName(sysSymTbl, call function name,
&whereis - call - function, &call - func%on - sym@pe);

Case Study 3: Patching Dynamically Linked Code

Test Results:
Load all functions
Id ~targ/nramltempldummyfl .o
value = 7326896 = OxGfccbO = myvalue + Ox3cc
Id <targ/nram/temp/dummyf2.0
value = 7337136 = Ox6ff4bO = dummyfunc2(void) + Ox4ac
Id <targ/nramltemplrundummy.o
value = 7336480 = Ox6ff220 = rundummy(void) + Oxfc
Id <targ/nram/templpatchitl .o
value = 7332528 = Ox6fe2bO = patchitl(void) + Ox8bc

Case Study 3: Patching Dynamically Linked Code

First execution of rundummy
rundummy()

I am a C function dummyfuncl
myvalue is: 1984

Summary

Maintainability should be considered in FSW design
- Margin on system resources
-Spare memory in a static FSW image
-Task modularity in a dynamic FSW system
- Flexibility of file system

