
Flight Software Workshop 2007 (FSW-07)

Current and Future
Flight Operating Systems

Alan Cudmore
Flight Software Branch

NASAIGSFC

November 2007 Page I

Outline

Types of Real Time Operating Systems
- Classic Real Time Operating Systems
- Hybrid Real Time Operating Systems
- Process Model Real Time Operating Systems
- Partitioned Real Time Operating Systems

Is the Classic RTOS Showing it's Age?
Process Model RTOS for Flight Systems
Challenges of Migrating to a Process Model RTOS
Which RTOS Solution is Best?
Conclusion

November 2007 Page 2

GSFC Satellites with COTS Real

(launched 12/98) (launched 3/98) (launched 2/99)
(waiting for launch)

(launched 8/92) (1 2/04)

XTE (launched 12/95) TRMM (launched 11/97)

JWST lSlM
(201 1)

Icesat GLAS f01/03)

MAP (launched 06/01)

4llH LRO
HST 386

-%Y

ST-5 (5/06)

November 2007 Page 3

Classic Real Time OS

What is a "Classic" RTOS?
- Developed for easy COTS development on common 16 and 32

bit CPUs.
- Designed for systems with single address space, and low

resources
- Literally Dozens of choices with a wide array of features.

November 2007 Page 4

Classic RTOS - VRTX

Ready Systems VRTX
Size: Small - 8KB RTOS Kernel
Provides: Very basic RTOS services
Used on:

- Small Explorer Missions
Used from 1992 to 1999
8086 and 80386 Processors

- Medium Explorer Missions
XTE (1 995) TRMM (1 997)

80386 Processors
- Hubble Space Telescope

80386 Processors

Advantages:
- Small, fast
- Uses 80386 memory protection -- A feature we have missed since we stopped

using it!

Current use:
- Only being maintained, not used for new development

November 2007 Page 5

Classic RTOS - Nucleus

Accelerated Technology Nucleus RTOS
Size: Small < 64Kbyte RTOS Kernel
Provides: Very basic RTOS services
Used on:

- Hu bble Space Telescope Solid State Recorder
Mongoose 1 processor

Advantages:
- Small
- Written in C
- Source Code included
- Add-ons available for Network, File system, etc

Current use:
- Used for some GSFC Rad Hard Coldfire GPS applications

November 2007 Page 6

Classic RTOS - vxWorks

Wind River Systems vxWorks RTOS
Size: Medium - Large > 100Kbyte RTOS Kernel
Provides: RTOS Services, DOS file system, Network Stack, Debugging
features
Used on:

- MAP, EO-1, GLAS
Mongoose 5 processor
Static memory map

- Triana, SwiWBAT
RAD6000 processor
C++ Flight Software, Dynamic loading, file systems

- SDO, LRO
RAD750 Processor
SDO using vxWorks 5.x, static memory map
LRO using vxWorks 6.x, dynamic loading, file systems

Advantages:
- "Standard" RTOS
- Wide support for debug tools, BSPs, add-ons
- Dynamic loading, File Systems, Network Stack
- Migration path to Memory Protected Process Model

Current Use:
- Baseline for all RAD750 Missions

November 2007 Page 7

Classic RTOS - RTEMS

OAR lnc - Real Time Executive for Multiprocessor Systems
Size: Medium - Large > 100Kbyte RTOS Kernel
Provides: RTOS Services, DOS file system, Network Stack
Used on:

- ST-5
Mongoose 5 processor
Static Memory Map

- Themis
Coldfire RH-5208 Processor
Static Memory Map

- SDO
5 Coldfire RH-5208 Processors
Static Memory Map

Advantages:
- Open Source (free to download and use)
- Written in C
- Source Code included
- POSlX APIs
- Very Similar to vxWorks kernel

Current Use:
- Being used for RH-5208 Coldfire and SPARCILeon applications
- Used in labs where license fees are prohibitive

--

November 2007

Hybrid Real Time OS

What is a "Hybrid" Real Time OS?
- A Hybrid Real Time OS is an Operating System that has features of both

the Classic RTOS and the Process Based Operating System.

vxWorks 6.x
- vxWorks 5.x features + Memory Protected "Real Time Process"
- Backwards compatibility with vxWorks 5.x and RTOS Tasks
- Single Physical Address space for Real Time Process
- Growing number of POSlX Programmer interfaces

Real Time Linux
- RTAl Linux, Wind River Real Time Core for Linux (RT Linux)
- Modified Linux Kernel running on top of a Classic RTOS. The underlying RTOS will

schedule the Linux Kernel as a task.
- Hard Real Time tasks run on the RTOS and can communicate with the standard

Linux Processes.

Current or Planned Use:
- vxWorks 6.x is being used on LRO and JWST. Use of Real Time Processes are

being considered.

November 2007 Page 9

Process Model Real Time OS

What is a Process Model RTOS?
- Implements a POSIXIUnix Style Process with memory protected virtual

address space.
Processes run in the CPU non-privileged user mode.
Device drivers and kernel code run in the privileged kernel mode

- Requires a CPU with Memory Management Unit
PPC, x86, ARM, etc.

- Provides POSlX Programming Interfaces
- Provides a Real Time Scheduler
- Typically require more Memory and CPU power than a Classic RTOS

Examples of Process Model RTOSs
- Lynx OS
- QNX Neutrino
- Green Hills Integrity
- Linux - Near Real Time variants: TimeSys, RedHawk

November 2007 page 10

Partitioned Real Time OS

What is a Partitioned Real Time OS?
- System is split into multiple virtual partitions to isolate critical taskslprocesses
- Memory and CPU time can be bound for each partition
- Critical applications in one partition cannot be affected by applications in another

partition

ARINC 653 Standard
- The ARINC 653 standard specifies the interface and services for safety critical

partitioned operating systems
- Most Partitioned RTOSs follow the ARINC 653 standard

DO-1 788 Standard
- Many partitioned systems are also DO-1788 certifiable for safety critical systems.
- DO-1788 is a standard for software development for safety critical systems.
- A DO-178B certifiable system does not have to be an ARINC 653 system.

Examples of Partitioned RTOSs
- LynxOS 178B
- LynxOS SE (Non 178B)
- BAE CSLEOS
- Green Hills Integrity 1788
- Wind River Platform for Safety Critical ARINC 653

November 2007 page I I

Is the Classic RTOS showing it's age?

Classic Real Time Operating Systems with shared memory space
have been used successfully in flight missions for decades.
But now we are adding:
- TCPllP Stacks
- File Systems
- File Transfer Agents
- Middlewarel00 Frameworks
- Dynamic Loaders
- Scripting languages
- On-Board Science Data Processing

As the size and complexity increase, so will the:
- Chance for a bug or stray pointer to kill the system
- Chance for a memory leak
- Amount of time needed to find a bug
- Amount of time it takes to start and reboot the system

November 2007 page 12

Process Model RTOS for Flight Systems

A Process Model RTOS can take advantage of the features in
advanced CPUs to increase the reliability of flight software.

Advantages of a Process Model RTOS
- Process based Memory Protection
- Ability to map around bad memory
- Page based dynamic memory al locationldeallocation
- Forced application I device driver separation
- Explicit codeldata sharing and encapsulation

Given some advantages, what are the challenges of
migrating flight software to a Process Model RTOS?

November 2007 page 13

Challenges of Migrating to a
Process Model RTOS

Inter-process Communication and shared memory
- Example : GSFC Software Bus

Potential solutions:
- Create Shared memory segments for Software Bus Global Memory and Buffers

Cannot use pointers with absolute addresses, must use offsets
- Send the entire message via SB 1 Inter-process Communication

Overhead in copying the data, but less chance for pointer corruption issues

November 2007 page 14

Challenges of Migrating to a
Process Model RTOS

Device Drivers, 110, and Memory Access

Traditional RTOS - n Direct Low Level OS Calls I RTOS I

H M O
- - 1 - - - -

H H @
- - -

I F Birect access to Global variable Direct I10 and
Global variables Memory Buffer access

Direct call into Task B v

I I10 Regs I

Buffers DM*

Kernel

Potential Solutions
- Low level device access through device drivers

Applications use device driver API to access hardware
- I10 remapping calls

Some Operating Systems have calls to map 110 space into the process memory
map

- Shared memory segments, Shared Libraries
Better way to share code and data

November 2007 page 15

Challenges of Migrating to a
Process Model RTOS

Memory Map Issues
- FSW Maintenance teams patch software by using memory maps and

absolute addresses.
- A process running in a protected virtual address space may have it's

memory pages allocated from anywhere in the pool of available pages
using the MMU.

- Options for patching memory?
It should be possible to get a page map for a process in memory and
determine what pages it has allocated.
Safer options include patching on disk executable and restarting the
process.

November 2007 page 16

MMU-Based RTOS

Physical Address OxCOOO

V~rtual Address 0 ,
v Free

Memory
Pages

Virtual Address N

0000

Free pages could
be allocated from
anywhere in the
pool.

Which RTOS solution is best?

For the foreseeable future, it looks like we will need all three types
of Real Time Operating Systems

- Classic RTOS for CPUs without a MMU - Small Instrument, Low Power
applications

- Process Model RTOS for more powerful CPUs - C&DH Systems, "Flight Server"
- Partitioned RTOS for Safety Critical I Manned Applications

Cold fire
RH5208

RTEMS

Future
Flight Processor

ARiNC 653
Partitioned OS

How do we manage the Flight Software for these three RTOS
models?

November 2007 page 17

Core Flight Executive App on a Classic
RTOS

The GSFC core Flight Executive (cFE) uses an OS Abstraction
Layer to isolate it from the RTOS.
The cFE maps the Application's main thread to an RTOS task
The cFE maps each Child task to an RTOS thread
There is no protection from the rest of the tasks in the system

Shared memory space

Core Flight Executive

November 2007 page 18

Core Flight Executive App on a Process
Model RTOS

Core Flight Executive POSlX Process

On a Process Model RTOS, a Core Flight Executive Application
maps to a memory protected process
Each cFE child task maps to a thread within the process
The cFE process is isolated from the rest of the memory in the
system

November 2007 page 19

Core Flight Executive App on a
Partitioned RTOS

On a Partitioned RTOS, each partition looks like a separate
processor to the core Flight Executive.
This model could have one cFE Core per partition communicating
via the Network Bus application.

November 2007 page 20

Conclusion

Although the future is in the use of Process Based
RTOSs in flight software, we still need to use
Classic RTOSs for smallllow power processors.
The use of an OS abstraction layer and a portable
Flight Software architecture such as the core
Flight Executive can help ease the transition from
one type of RTOS to another and promote
software reuse.

Questions?

November 2007 page 21

