
Architecture Analysis of Evolving
Complex Systems of Systems

Technical Presentation
Software Assurance Symposium

2008

Principal Investigator (PI): Dr. Mikael Lindvall, FC-MD
NASA POC: Sally Godfrey, GSFC

Team members:
Chris Ackermann, Dr. Arnab Ray, Lyly Yonkwa, Dharma Ganesan (FC-MD)

William C. Stratton, Deane E. Sibol (APL)
Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)

Fraunhofer Institute for Experimental Software Engineering (IESE)
Johns Hopkins University Applied Physics Laboratory Space Department Ground Applications Group (APL)

Outline

• Motivation
• Background: (static) SAVE
• Dynamic SAVE Vision
• Dynamic SAVE examples
• Applicability Throughout the Life Cycle

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Problem/Approach

• Systems are often difficult to understand
– Systems of systems adds to the challenge
– Makes system verification difficult
– Interfaces often source of problems

• Approach
– Architecture analysis focusing on interfaces

• The new tool, Dynamic SAVE,
– extends the already existing static Software Architecture

Visualization and Evaluation (SAVE) tool

Background: The (static) SAVE Tool
Software Architecture Visualization and Evaluation

• Does the actual implementation match the planned architecture?
– Define a planned architecture
– Create an actual architecture from source code
– Identify architectural violations through comparison

• Applied to APL’s Common Ground System
• NASA Research Infusion project (Aerospace 2007)
– (and other systems, e.g Core Flight System (cfs/cfe,) SNAS, White Sands)

• Conclusion
– The SAVE approach is useful and practical
– One can quickly model, visualize, analyze, find static architecture violations
– Good for single software applications
– But for systems of systems, some questions remain unanswered…

Application-Specific
Modules

Encapsulation of
client/server interface

Encapsulation of socket
communications

A Planned Architecture

The Actual Application Architecture

Dependency in
actual, not in
planned

Dependency
in planned,
not in actual

The Actual Architecture vs. The Planned

But, who does socket
communicate with?

The Common Ground System

level_zero

indexer

archive_server

Planning &
Scheduling

CSCI

SSC POC
Clients

1:N

Archived
Telemetry

Telemetry
CSCI

spooler

Real-Time
Telemetry
Packets

Plotter

eng_dump

Assessment CSCI Telemetry Data Flow Diagram

MOPs/ I&T
Users
1:N

Archived
Telemetry

Level 0 Data Files
Ancillary Products

ArchiveServer
Directives

Decommutated
Points File

Non-Real-
TIme Pkt

Files

Non-Real-Time Extracted
Telemetry Packets

Archive of
Pkts and
Indexes

ArchiveServer
Directives

Telemetry
Pkt Files

Requested
Points File

ArchiveServer
DirectivesArchived

Telemetry

*Timekeeping System expanded separately

Web Data Server

Sorted
Telemetry Pkt

Files &
Indexes

merger
*Timekeeping

System

Archived
Telemetry

Plots
Archived
Telemetry

ArchiveServer
Directives

LHerrera 08/03

instant_replay

instant_ replay
Directives Telemetry

gap_reporter

Server

Client

Dyn-SAVE Vision

Telemetry
Server

Telemetry
Client

Specify Planned
Behavior

Form Actual
Behavior

Specify Level of Abstraction
For analysis

Capture Dynamic
Information

Compare Planned
and Actual
Behavior

• Who does socket communicate with?
• Is communication according to specification?
• Check Sequences, Parameters, Values, Timing

Dyn-SAVE Capabilities
(Vision)

Telemetry
Server

Telemetry
Client

Form Actual
Behavior

Specify Level of Abstraction
For analysis

Compare Planned
and Actual
Behavior

What components in
the client are
responsible for
unspecified
communication?

Reuse Planned
Behavior paintCompoonent

The Current Work
On Dynamic SAVE

DynSAVE in perspective

12

The Common Ground System

These systems all have ICDs
(Interface Control Documents)

Focus on:
Interface Control Documents

– NASA systems often developed by different teams
– Interface Control Documents (ICD) is key, but

• ICDs often interpreted differently because
• ICDs implicit, lack important details etc.

– Cause subtle critical deviations from specified behavior
• Deviations difficult to detect
• Emerging behavior difficult to predict

– Can result in severe problems, e.g. lost data, performance
– Need to

• Detect deviations before deployment
• (Specify expected and actual behavior before creating ICD!)

Research Questions

• Sequence diagrams
– Can we use sequence diagrams to model,

abstract, and detect such deviations?
– Can sequence diagrams express what we

need?
• Iterative modeling

– Can we start with abstract models, add details
as necessary?

Approach

• Collect concrete examples from APL
– Model planned behavior

• Use specification from ICD
– Capture actual traces

• Use Archive_Server and Eng_Dump
• Generate Client scenarios, observe how Server

responds

• Identify common patterns

Planned sequence diagram

The “simplest” diagram that describes the planned
communication behavior described in the ICD

An illegal extra filter is sent after BeginPlayback and Data messages have been sent.
The illegal filter is difficult to detect because it is in packet 869.

Example 1: Illegal filter

Rules:
1. Start time must be less that stop time
2. Data type of each of the received data messages must match specification

Detailed planned sequence diagram
experimental notation

Example 2: Illegal Type specification

STF ordered – STP received.

=STF)

Adding Timing Constraints

Checking for Timing Problems

client server

Filter

BeginPlayback

Data

Data

Data

EOT

0s

1.85s

0.35s

0.1s

Data

0.1s

0.1s

0.1s

04-15-2008 dynSAVE 22

CFDP – A Mission Data System Protocol

• CFDP software provides reliable downloads
of recorded on-board data

– The implementation is distributed across flight
and ground systems

– The protocol runs on top of unreliable CCSDS
command and telemetry layer

• At APL, CFDP is mostly automated, but…
– Operators turn off CFDP uplink during critical

command load sequences
– Operators freeze and thaw timers so that

pending transactions don’t time out between
contacts

• Improper CFDP operation can lead to
unnecessary retransmissions, wasting
precious downlink bandwidth

04-15-2008 dynSAVE 23

DynSAVE monitoring of CFDP

• DynSAVE monitors macro-level behaviors of the
CFDP protocol without affecting flight or ground
software

• DynSAVE could detect behaviors that are
indicative of improper CFDP operation, for
example:

– timers were not frozen and uplink was disabled on
the ground for an extended period, causing multiple
retransmissions when the uplink was finally
enabled again

• DynSAVE could detect behaviors that are
indicative of issues in CFDP implementation, for
example:

– sender continues to send file data after the
transaction has been cancelled

• These types of behaviors can go undetected (file
transfers still work) but are important to detect
(they can result in data loss!)

D
yn

S
A

V
E

X

X

Planned CFDP Sequence

Rules:
1.Check that received FD are not NAKed *
2.Check for duplicate FDs *
3.Check that we have all FDs upon FIN *
4.Check that identical NAKs are not sent back-to-back unless timer went off

FileData: 482548-483544
FileData: 483545-484541
FileData: 484542-485538
FileData: 485539-486535
FileData: 486536-487532
FileData: 487533-488529
FileData: 488530-489526
FileData: 489527-490523
FileData: 491521-492517
FileData: 492518-493514
FileData: 493515-494511
FileData: 494512-495508
FileData: 495509-496505
FileData: 498500-499496
FileData: 499497-499999
EOF: Condition Code=No Error
ACK(EOF): Condition Code=No Error
NAK: 19940-20937;27916-28913;36889-37886;56829-
59820;72781-73778;76769-77766;82751-85742;101694-
102691;111664-112661;115652-116649;121634-
122631;130607-131604;139580-140577;146559-
147556;153538-154535;155532-156529;170487-
171484;197406-198403;203388-204385;220337-498500

Actual CFPD Sequence
Annotated, Collapsed

Needed FDs: 502
Send FDs: 840
Potential Waste: ~70%? – Further analysis needed.

Zoom in on CFDP sequence

Rule 2 Violation:
duplicate FD!

Life Cycle Support

System
Architecture

Use DynSAVE to
Specify and Test
Communication

Add to ICD

Sub-System
Development

Use DynSAVE to
Develop and Test

based on ICD

System
Integration and Test

Use DynSAVE to
test based

on ICD

Initial use of Dyn SAVE

Create System Architecture
No Server, No Client Exist
Use DynSAVE to
• Specify Planned communication

– Sequences
– Parameters, Values
– Timing constrains

• Create Tests
– Correct, Incorrect behavior

• Specific incorrectness
• Automatically generate defects

• Ensure that communication
protocol can handle all tests

• Add Diagram, Specification,
Tests to ICD

• “Generate” information for ICD

Client Server

Communication

Sub-System
Development

No Client (or Server) Exist
Server is built to ICD
Use DynSAVE to
• Import Planned spec from ICD
• Use Tests from ICD, create new

– Correct and Incorrect behavior
• Ensure that Server can handle all tests
• Future research: Generate Mockup

Clients (exe) for test
– Remotely controlled Mockup

• Turn on/off certain Mockup behavior

– Run simultaneously on several machines

Client Test Cases/
Mockup Clients

Developed
Server

Status

• Dyn-SAVE works for telemetry protocol
• Currently adding functionality to evaluate

CFDP protocols
• Applying Dyn-SAVE to APL’s systems
• We’d like to apply to other systems

Summary

• Analyze, Visualize, and Evaluate
– structure and behavior using
– static and dynamic information
– individual systems as well as systems of systems

• Next steps:
– Refine software tool support
– Use approach to review, improve ICD

• E.g. add planned sequence diagrams, rules to ICD
– Apply to other systems to get feedback,

understand needs

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Architecture Analysis of Evolving
Complex Systems of Systems

Executive Status Report
Software Assurance Symposium

2008

Principal Investigator (PI): Dr. Mikael Lindvall, FC-MD
NASA POC: Sally Godfrey, GSFC

Team members:
Chris Ackermann, Dr. Arnab Ray, Lyly Yonkwa, Dharma Ganesan (FC-MD)

William C. Stratton, Deane E. Sibol (APL)
Fraunhofer Center for Experimental Software Engineering Maryland (FC-MD)

Fraunhofer Institute for Experimental Software Engineering (IESE)
Johns Hopkins University Applied Physics Laboratory Space Department Ground Applications Group (APL)

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Problem/Approach

• Systems are often difficult to understand
– Systems of systems adds to the challenge
– Makes system verification difficult
– Interfaces often source of problems

• Approach
– Architecture analysis focusing on interfaces

• The new tool, Dynamic SAVE,
– extends the already existing static Software Architecture

Visualization and Evaluation (SAVE) tool

Dyn-SAVE Vision

Telemetry
Server

Telemetry
Client

Specify Planned
Behavior

Form Actual
Behavior

Specify Level of Abstraction
For analysis

Capture Dynamic
Information

Compare Planned
and Actual
Behavior

• Who does socket communicate with?
• Is communication according to specification?
• Check Sequences, Parameters, Values, Timing

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Relevance to NASA
– NASA systems often developed by different teams
– Interface Control Documents (ICD) is key, but

• ICDs often interpreted differently because
• ICDs implicit, lack important details etc.

– Cause subtle critical deviations from specified behavior
• Deviations difficult to detect
• Emerging behavior difficult to predict

– Can result in severe problems, e.g. lost data, performance
– Need to

• Detect deviations before deployment
• (Specify expected and actual behavior before creating ICD!)

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

DynSAVE in perspective

5

APL’s Common
Ground System

These systems are based on ICDs
(Interface Control Documents)

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Current capabilities
• Applied to APL’s Telemetry protocol

– See example below
• Currently Capabilities allows us to

– Model planned behavior (based on ICD)
• Sequences, Parameters, Values, Timing

– Capture and parse actual communication
– Visualize actual behavior
– Compare planned behavior to actual
– Automatically detect and visualize deviations

• Already detected some surprising deviations!

Abstract planned diagram
for Telemetry protocol

The “simplest” diagram that describes the planned
communication behavior described in the ICD.

Enhance in iterative fashion.
SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Detailed planned & actual

=STF)

Illegal Filter
Specification
STF ordered –
STP received

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

More examples and details in technical presentation!

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Planned capabilities
Being able to
• Model Planned behavior of

– Ground system software
– Flight software
– Communication between Ground and Flight

• e.g. CFDP

• Visualize actual behavior
• Compare planned and Actual behavior
• Automatically detect and visualize deviations

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Technical challenges
• Difficult to use existing case tools to create

planned sequence diagrams, e.g.
– Most only support basic diagrams
– Export formats often are not correct, usable

• Overcoming the problem
– Provide importers for case tool
– Provide our own sequence diagram editors

SAS_08_ Architecture_Analysis_of_Evolving_Complex_Systems_of_Systems_Lindvall

Summary

• Analyze, Visualize, and Evaluate
– structure and behavior using
– static and dynamic information
– individual systems as well as systems of systems

• Next steps:
– Refine software tool support
– Apply to other systems
– Apply earlier in system life cycle

	DynSAVE2008-SAS_Technical.pdf
	Architecture Analysis of Evolving Complex Systems of Systems��Technical Presentation�Software Assurance Symposium�2008����
	Outline
	Problem/Approach
	Background: The (static) SAVE Tool� Software Architecture Visualization and Evaluation
	Slide Number 5
	Slide Number 6
	Slide Number 7
	The Common Ground System
	 Dyn-SAVE Vision
	 Dyn-SAVE Capabilities �(Vision)
	The Current Work�On Dynamic SAVE
	DynSAVE in perspective
	Focus on:�Interface Control Documents
	Research Questions
	Approach
	 Planned sequence diagram
	Example 1: Illegal filter
	Detailed planned sequence diagram�experimental notation
	Example 2: Illegal Type specification
	Adding Timing Constraints
	Checking for Timing Problems
	CFDP – A Mission Data System Protocol
	DynSAVE monitoring of CFDP
	Planned CFDP Sequence
	Slide Number 25
	Actual CFPD Sequence�Annotated, Collapsed
	Zoom in on CFDP sequence
	Life Cycle Support
	Create System Architecture
	Sub-System�Development
	Status
	Summary

	DynSAVE2008-SAS_Executive.pdf
	Architecture Analysis of Evolving Complex Systems of Systems��Executive Status Report �Software Assurance Symposium�2008����
	Problem/Approach
	 Dyn-SAVE Vision
	Relevance to NASA
	DynSAVE in perspective
	Current capabilities
	 Abstract planned diagram� for Telemetry protocol
	Detailed planned & actual
	Planned capabilities
	Technical challenges
	Summary

