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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
TECHNICAL NOTE D-798

SOME SIMPLE SOLUTIONS TO THE PROBLEM OF
PREDICTING BOUNDARY-LAYER SELF-INDUCED PRESSURES

By Mitchel H. Bertram and Thomas A. Blackstock
SUMMARY

Simplified theoretical approaches are shown, based on hypersonic
similarity boundary-layer theory, which allow reasonably accurate esti-
mates to be made of the surface pressures on plates on which viscous
effects are important. The consideration of viscous effects includes
the cases where curved surfaces, stream pressure gradients, and leading-
edge bluntness are important factors.

INTRODUCTION

As the Mach number increases into the hypersonic range large pres-
sure and temperature gredients can be induced on a flat plate by
leading-edge bluntness and boundary-layer displacement effects. Any
curvature to the plate surface simply adds still another complicating
factor to the flow picture, and there may be any combination of these
factors. In addition to the effect of these induced pressures on
loading, the increased pressures can have an important effect on the
skin friction and heat transfer on the plate surface.

The purpose of this paper is to show the simplified theoretical
approaches which are presently available and which allow reasonably
accurate estimates to be made of the surface pressures on plates on
which viscous effects are important and where surface curvature, stream
pressure gradients, and leading-edge bluntness can be contributory
factors.

SYMBOLS

a constant

C=mn WToo/ lJ'cx)TW



diameter of cylinder

f(TW,Tr,y,Mw) in equation for laminar boundary-layer growth
(see egs. (3) and (14))

index number (O for planar model, 1 for cylindrical model)

hypersonic similarity deflection angle (M, - deflection angle)

hypersonic similarity deflection angle using slope at edge of
boundary layer

coefficient in hypersonic-similarity-theory-laminar-boundary-
layer growth equation (see eq. (2) and fig. 1)

nose drag coefficient
Mach number

exponent in power equation for surface coordinates of curved
plate (y S xm>

Knudsen number

Prandtl number

exponent in power equation for surface pressure variation
with x

ratio of local surface pressure to free-stream static pressure
pressure
Reynolds number

Reynolds number based on undisturbed free-stream conditions
and leading-edge thickness or rod diameter, respectively

absolute temperature -
leading-edge thickness
distance along axis of flat plate from leading edge

model span

AN L



o angle of inclination of flat plate relative to free-stream,
flow direction
Y ratio of specific heats
5 boundary-layer thickness (see eg. (2))
€ correction factor for 7 in bluntness-induced-pressure
equation (see eq. (41))
W dynamic viscosity
£ coefficient in induced-pressure equation for rod (see eg. (50))
X viscous interaction parameter X = Mg JE-
[Royx
w local surface slope
Subscripts:
b nose bluntness induced
i inviscid
r adiabatic wall
v viscous induced
W wall
X surface distance
0 free stream
0] stagnation
2 local inviscid pressure

A prime designates the first derivative with respect to the subscript.

Superscripts in parentheses refer to the order of an equation devel-

oped in series.



SOME SPECIAL SOLUTIONS FOR THE SELF-INDUCED

PRESSURE GRADIENT

Useful results may be obtained if the similarity theory for a
boundary layer in hypersonic flow (ref. 1) is used as a basis for
predicting self-induced pressures to a hlgher order than may be obtained
from the so-called "weak-interaction" or "strong-interaction" solutions.
(See ref. 2 for a discussion of these theories. ) First, consider the
boundary-layer thickness itself in hypersonic flow. To satisfy the
requirements of this hypersonic similarity theory, a pressure variation
at the edge of the boundary layer is postulated as follows:

P, X" (1)

Then according to the hypersonic similarity theoryl(ref. 1) the boundary-
layer thickness is (assuming Prandtl number unity in the derivation)

M2 JC

GK).L(')':n) _ (2)
\/P V R°°:X
where
G = 1.72082-—'—£<T_W- + o.5859> (3)
2 \To

and Kh(y,n) is the coefficient determined from hypersonic similarity
theory. The variation of K); with negative exponents in the pressure-

variation law (favorable pressure gradients) is shown in figure 1. The
curves shown are different from those in reference 1 because additional
values from reference 3 of the integral function used to obtain K) have

been utilized to obtain more accurate fairings of the integral function.
If hypersonic tangent-wedge theory (ref. 4) with the slope of the

outer edge of the boundary layer as the effective wedge angle is assumed
to be sufficient to determine local surface pressures then

P - 2(55) = £(Ks) ()



The boundary-layer slope is upon differeuntiation of equation (2) (with
K) assumed to be constant)

. a2 Jo
ax=__1_"_£._‘/_:<1-21§_%> (3
2 JER, 4

or in terms of the Lees-Probstein interaction paremeter X (ref. 5)
where

5
% = 2 /c

(6)

the hypersonic similarity deflection angle may be written

K Kol R
Ka.é&_ﬁ-sQJrE%) ()

Now consider which values of the pressure-law exponent n are of
interest if self-induced pressures only are to be considered. The
variation of the local value of the exponent n with self-induced pres-
sure ratio P is shown in figure 2. The value of n is zero at P =
and at increasingly large pressures the curve of n 1is asymptotic to
-0.5, the value obtained from strong-interaction theory. The values of
n shown in figure 2 were obtained by assuming that the pressure is
linear in X with the following form (developed in more detail in a
later section)

P=14+aX (8)

since for any function (of x, say) the local value of the exponent in a

1
xt (x)’ then for
- £(x)
equation (8) £(x) is (1 + &X) and thus the exponent n as a function
of pressure ratio is given by

power-law fit to the function may be expressed as n =

lav)
]
[

- (9
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Figure 1 shows that in helium (y = 5/3) the coefficient Kj is

essentially unity (error generally less than 2 percent) in the range
0>n>-0.5 and in air (y = 7/5) the maximum deviation from unity is
about 10 percent.

Wesk Interactions

First consider equation (7) in the light of weak-interaction
theory. From hypersonic small-perturbation theory (see ref. 4)

p(2) -1 4 gk 4 ---——-7(7;: L)y2 (10)

Assume that a first-order correction for the local pressure is sufficient
in equation (7). That is, the value of P to be inserted in equation (10)
will be obtained from the first-order solution to the weak-interaction
boundary-layer problem (ref. 5) where

p(1) _ 1, Z-(-}gﬂ (11)

Substituting equation (11) into equation (7) with (IQL = 1) and then this
combination into equation (10) results in the following relation

2
pl2) 214 1295("o 1+ %"" " <22§°°>2 1+ 12%(‘00

\/;—é_c—i 2<1+Z§-"> by <1+12§0;,> 2<1+7—2G'->§,0>

(12)

Equation (12) may be compared with the original Lees-Probstein equa-
tion (ref. 5) for second-order wesk interaction which in the present
nomenclature may be written as follows:



2
p(2) 1, 1%, z:.i(&m> (13)
2 by \2

Equation (13) may be derived readily from equation (10) by utilizing
equation (7) and n = O.

Figure 3 has been prepared to show the difference between the use
of equations (12) and (13) in the case mentioned previously where the
boundary-layer thickness coefficient K) is essentially unity, that is,

the flat plate in helium. In addition to the Prandtl number one solution,
curves for Prandtl number 0.725 are also shown for which the preceding
development is teken to hold except that G is given by the following
equation adapted from reference 6:

’ 4
_ /T

¢ = 1.6&82_2__.1.@2 + 0.552) (14)
r

The reduction in induced effects due to the first-order correction
Tor local pressure is certainly significant and appears to be corrobo-
rated by experimental results obtained by Henderson and_Johnston on a
5C wedge tested in helium (ref. 7). In figure 3 both X and the
pressure-difference ratio are based on the inviscid conditions that
would occur on a wedge having a sharp leading edge were there no boundary
layer present. For the two stations nearest the leading edge the experi-
mental data are shown both as measured and with an increment in pressure
subtracted to account for leading-edge bluntness. This increment
ascribed to leading-edge-bluntness effects is estimated from a correla-
tion of characteristics solutions for the flat plate with a sonic-wedge
leading edge at angle of attack (ref. 8) by parameters suggested by
Chernyi (ref. 9) and based on the assumption that the boundary-layer-
induced and bluntness-induced effects may be treated independently. The
effect of leading-edge bluntness is indicated to be small. The lQS wedge
data also shown on this plot were obtained at too low a value of X +to
aid in distinguishing between theories considering data uncertainties.

Strong Interactions

Thus far the discussion has been restricted to considering rela-
tively small induced pressures, that is, restricted more or less to the
weak-interaction regime of self-induced pressures. Assuming that the
tangent-wedge approach is still applicable, a more general approach,
insofar as the basic pressure equation used is concerned, will now be
attempted. In this case the hypersonic equation given by Lees (ref. 4)



will be used. Tnis equation is in terms of boundary-layer slope

\2
P=l+Z-£Z-E——J-'—)-K§+7K5 l+(—7—£—:-LK) (15)

Based on equation (7), with Ky = 1 and with equation (15), calcula-
tions have been carried out for helium. These calculations were made by
iteration for a given value of X by assuming for each iteration that
the pressure ratio is a linear function of X starting with the result
from strong-interaction theory. (See refs. 4 and 1.) In this way the
results are easily calculated. Iterations are obtained by averaging the
assumed pressure ratio and the pressure ratio resulting from this assump-
tion. This average is used to start the next iteration. The results are
shown in figure 4. The convergence is rapid. The use of the more accu-
rate pressure law (eq. (15)) makes only a small difference from the
results obtained by using the expansion of equation (15) for large Kz or

o(0) _ 2y w; l)Kg (16)

The differential equation which results when equation (16) is substituted
into equation (7) may be solved to give the asymptotic solution known as
strong-interaction theory

(0) _ (r +1) oy
P =g /VL%—_ c;><(1<4)n=_1/2 (17)

where G is given by equation (5) and the required values of K| are
given in figure 1. A comparison of the complete hypersonic equation
(eq. (15)) with its "strong" shock approximation (eq. (16)) and its
"weak" shock approximation (eq. (10)), is shown in figure 5.

The result of the iteration procedure utilizing equation (15) and
equation (7) will hereafter be referred to as the "complete theory" (for
the sake of briefness even though fundamental completeness is not
implied). The results from the complete theory are the same as those
from equation (12) for values of GX less than approximately 3. For
GX greater than approximately 1 the curve for the variation of P with
GX 1is essentially linear and may be accurately represented by the .
equation
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P = 0.8% + %/Zﬁlg_ﬁ X (18)

Interestingly enough, for practical purposes this result could have been
obtained from equation (17) if K) were assumed to be unity and

P(O) =P - 1, even though equation (16) deviates markedly from equa-
tion (15) at the lower pressure ratios. For P > L the induced-presssure
ratio can in general be taken as

P~1+ E /Zg-"—’;—l)- G')Z(Ku)n=-l/2 (19)

while for P < 4 equation (12) should be adequate and, in general, data
should lie in the region defined by equations (12) and (19). A compari-
son between equations (12), (13), (19), and the complete theory (essen-
tially eq. (18) is shown in figure k4.

Consider now the insulated plate in air where the value of the
coefficient K) deviates by an appreciable amount from the value unity.
(See fig. 1.) Here the fact that Ky 1is greater than 1 offsets, to

some extent, the result of P >1 on the boundary-layer thickness. (See
eq. (2).) Thus in the low X range the actual induced pressures will be
expected to be between the values given by equations (12) and (13), but
closer to the values from equation (12). As X increases the actual
pressure would be expected to approach the complete theory with a con-
stant value of Kj = 1.1 which is essentially equation (19).

These various theories are shown in figure 6 with applicable data.
Shown are Kendall's data from an insulated flat plate at M = 5.8

(ref. 10) and data obtained in the Langley ll-inch hypersonic tunnel at
M, = 9.6 on a noninsulated plate with a temperature gradient for which
the data have been corrected to the insulated plate case as deséribed in
reference 2. At M = 9.6 data both with the plate surface alined with

the flow and at an angle of attack have been obtained. (A portion of
this data has previously been reported in refs. 11, 12, and 13.) The
data for zero angle of attack extend the data given in reference 2 and
are believed to be more accurate while angle of attack has been used to
extend the range of X and to give an additional check on the validity
of the correction to insulated plate conditions. At angle of attack the
local inviscid Mach number departs appreciably from 9.6 as shown in
figure 6(b). The original data were picked at a time when the temperature
distribution on the plate was the same for all Reynolds numbers and
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angles of attack. This temperature distribution is shown in references 11
and 12.

At zero angle of attack (fig. 6(a)) there is good agreement between
Kendall's data and present data in the range where they overlap. The data
points in general are slightly above the curve for weak-interaction theory
with the local pressure correction (eq. (12)) but approach the curve for

"complete theory" with Ky = 1.1 at the higher values of X. The pressure
data at angles of attack (fig. 6(b)) show good agreement with the data at
zero angle of attack, at least for values of X wup to about 10, and indi-
cate that the complete theory with Ky = 1.1 (dr eq. (19)) is adequate at

least in the range of X shown.

BOUNDARY-LAYER- INDUCED EFFECTS IN A NON-SELF-INDUCED

PRESSURE GRADIENT

Strong Non-Self-Induced Pressure Gradient

‘Effect of wall curvature.- First, with equation (1) as a requirement,
the slope of the edge of the boundary layer (eq. (4)) in hypersonic simi-
larity form may be written as

Kg = M, 5y =g____(1- n)Ky, (20)
P2/Py

Then assume that the boundary layer is growing on a surface of sufficient
curvature so that equation (16) well represents the pressures induced by
the surface slope alone. In general, a change in the slope of the sur-
face induces a pressure rise above the pressure that would have existed
as follows (from a Tinite perturbation on eq. (16)):

Po ~ P _ 7y + D) [k + (AK-)e] (21)
Py 2

vhere K =Mw. If M=Ky and Ky is assumed to be small then equa—
tion (21) with equations (20) and (16) gives

DA RN o v
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- P —
w2 . \/2(7;’ 1) @Xo(1 - n)Ky (22)
which, since 2(AK)K >> (AK)®, holds for

y + 1
8y

> Zé?fim(l - n)Ky

8"d |I\;d

where n is obtained from %g = f(w) in the form of equation (16).

[ee]
Equation (22) does not reduce to equation (17) when n = -1/2, since
the self-induced effect is derived as a small perturbation on a pre-
existing pressure gradient.

If the ratio of the local wall pressvre, with the self-induced effect
included, to the inviscid local pressure is desired equation (22) may be

written as
P X,
o1 /2(7 + 1) Zg- © (1 - n)K, (23)
Po 7 Pp/Pe

which has the same limitation as equation (22). Now for hypersonic flow

I-Eilgl—]

(2k)

F
5 [g°

For an oblique shock compression with pressure ratios not too close to
unity

T - 1P
22224 (25)
To 7+ 173,

If, further, the unity term in equation (25) can be neglected then
?(_gzgﬁy—'_l (26)
X PoVr -1
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Then in terms of inviscid local conditions equation (25) with equa-

tion (26) becomes
Py (2 =D 2% L g, (27)
Py 14 2

Equation (23) may also be presented in terms of surface slope by using
equation (16) or

By o) GX : e 2
5;1 T v/7(7 + 1) K2 ) n)Ku (K ” C&- m(l ) H)Ku>

(28)

The externally imposed pressure gradient.- The case where the pres-
sure gradient is externally imposed may also be simply treated. Again it
is assumed that the increase in surface pressure is small compared to the
inviscid local pressure. The local pressure ratio is assumed to be given
by the first-order form of equation {10), which is

1Y

where the required form of equation (7) is

l

Ks,o = Mgb =% 1 - n)K, (30)

ggjf

i’
and with isentropic external flow or isentropic compression on a curved
plate

G o _
4 =) (1 - n)K, | (31)

Py ‘ -

Ks,o =

DWW -
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in which the variation of the local inviscid pressure ratio PE/Pm’ with
surface distance has the form of equation (1) and the value of (1 - n)K)

is obtained from this pressure law. In this case o refers to some
convenient reference condition such as the local free-stream Mach number
at the leading edge. Equation (29) with equation (31) gives the result

(1) . 3z
” =14 %? ____27:1 (1 - n)Ky, (32)

With reference to equation (52) the following point is made; that is,

by hypersonic approximation for an isentropic compression, equation (24)
is

> P)
1500 %5 (53)
2y-1 ‘/'g
P\ 27
ey
so that equation (28) may be written as
(1)
Py _ pitva
e ZXo(1 - n)Ky (34)

Equation (34) has the same form as equation (27) and gives not too dif-
ferent a result even though the development of the two equations was
somewhat different. Note that, with n =0 and p, = p_, equation (34)

reduces to equation (13) (even to second order, it can be shown). Thus
equation (34) is essentially the form of weak-interaction theory for
self-induced effects of a boundary layer growing in a non-self-induced
pressure gradient and the term (l - n)Ku is the correction term due to
the external gradient.



1k

(1 - n)Ky
n Shown here are values of
y =T7/5 y = 5/3 (1 - n)Ku for some arbitrary
00 1.000 1.000 values of nd foz favorable
pressure gradients on an insu-
:é :lL %3 iégg lated plate in both air and
-.3 1.%6k 1.31% helium. Other temperature
- 1.502 1.4t ratios and values of n for
-.5 1.649 1.5%3 air and helium or other values
-6 1.801 1.648 of 7 may easily be calcu-
-7 1.965 1.769 lated by using figure 1 and
-.8 2.145 1.895 reference 1.

Weak Non-Self-Induced Pressure Gradient

It is clear that with a power-law variation of pressure with sur-
face distance the boundary-layer growth and hence the self-induced
effects depend upon the local conditions with a generally small, but
not necessarily negligible, correction due to the exponent in this
power-law variation of pressure. This dependence on local conditions
will now be used to investigate the case where the change in local
pressure, whether by external causes or changes in surface slope, is
small compared to the local self-induced pressure. Based on inviscid
local conditions, with the exponent in the pressure law having negli-
gible deviation from n = -1/2 (the strong-interaction case), equa-
tion (17) may be written

P _3 0+ 1) px
'Ig BT e KyGXo (35)

where the subscript 2 indicates local inviscid conditions and the sub-
script w indicates surface conditions. Equation (35) written in terms
of reference conditions designated by the subscript « is

Py _3 [+ 1) gz (r2 22
5 "% 5 K, GX %z (%6)

With hypersonic flow and isentropic pressure changes, equation (33) may
be applied from which

-

VAR ol
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EY
X 2
X2 P _ (B2} (37)
%o P \Poo
and for small pressure deviations from the reference conditions
el 1l (38)
Xy Poo 2y P,

where Ap = Pr - P and, to the present approximation, equation (38)

applies equally well for pressure changes caused by weak shocks. Equa-
tion (36) with equation (38) becomes

R PO TN S U R - (%9)
Wy 2y P Yy - 1M,

in which Pw,m designates the strong-interaction self-induced pressure

calculated for free-stream conditions which are the same as the refer-
ence conditions . If the inviscid pressure change Ap/pco is due to

a small surface inclination, then in terms of the hypersonic similarity
parameter K =M o

= K
2 =14 5 (40)

Equations (39) and (40) allow an estimate to be made of such factors as
(l) the effects of small errors in evaluating free-stream Mach number

or in setting the angle of attack of a flat plate, (2) the effects of
small body curvatures, and (3) the possible effects of external pressure
gradients. TFactors (1) and (2) are straightforwardly obteined from
equations (39) and (40). Factor (3) is interesting because of the pos-
sibility of using equation (39) to evaluate the effects of longitudinal
pressure gradlents in conical nozzles such as those which have been used
to provide much of the information on self-induced effects in helium.
Data have been obtained in l-inch- and 2-inch-diameter conical helium
nozzles at Langley Research Center (refs. 7 and 14) for which the Mach
number increases about 0.5 in the length of the measuring stations on a
flat plate. These tests were performed st Mach numbers between 16 and 2k.
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In the case of Erickson's tests (ref. 14) the correlating parameters were
evaluated at tunnel-empty local conditions, corresponding to the sub-

script 2 in the preceding development. In the investigation by Henderson -
and Johnston (ref. 7) the correlating parameters were evaluated at the
tunnel-empty conditions at the leading edge of the model. Equation (39)
indicates a difference between the two methods of evaluation of the slope

of P =P(X) of at most about 4 percent. Also, the P(X) 1line from a
leading-edge-condition evaluation will not pass through the P=1,

X = 0 point.

THE BLUNTNESS-INDUCED--VISCOUS-INDUCED INTERACTION PROBLEM

Theoretical Approach

The problem of the interaction between bluntness-induced and
boundary-layer-induced flow fields on a flat plate is of considerable
importance. One approach to this problem is suggested by the work of
Baradell and Bertram (ref. 8). In this paper, by means of the charac-
teristics theory, surface pressure distributions on curved plates with
surface coordinates given by the equation y « x® were investigated.
It was found that addition of the pressure increment due to local plate
angle (tangent-wedge theory) and the pressure increment due to the
blunt leading edge (as on a flat plate) gave a result which agreed well
with the characteristics theory. This blunt-leading-edge pressure-ratio
contribution for pb/poo 2 1.2 1is given accurately by

£° |

2/3
= 0.187{\[?(7 - 1)2%;] + 0.7h (41)

where € is a small correction term to the function of 7 shown above
which can be represented by e =~ 1 - [b.OOhB/(y - 1)2] . Equation (k1) is
found to give good results from constant 7y of 6/5 to 9/5 based on the
results in reference 8.

The curved plate in the problem of reference 8 is replaced by the
displacement thickness of the boundary layer. The growth of this
boundary layer is assumed to be controlled by the pressures on the plate
and by the undisturbed free-stream Mach number; that is, no account is
taken of the entropy jump at the leading edge. The decrease in Mach num-
ber associated with the leading-edge entropy jump is assumed to be com-
pensated for by the degrease in Reynolds number. -

Two different cases for the problem of surface pressures induced by
blunt-leading-edge viscous interaction will be shown. In the first case
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the bplunt-leading-edge-induced pressures are assumed to be large com-
pared with the viscous-induced increment in pressure. In the second

case the viscous-induced increment in pressure is too large to be ignored
and contributes significantly to the induced effect on boundary-layer '
growth. If the blunt-leading-edge-induced pressures are assumed to be.
large compared with free-stream pressure and much larger than the viscous-
induced increment, then the slope of the edge of the boundary layer in
hypersonic similarity form may be given by equation (20) in the following
form (n = -2/3 from eq. (41)):

K),GX,,

1 /poo

Ky = Mmﬁ}'( = (42)

O\t

Taking the coefficient K) as unity (see fig. 1) and substituting equa-
tion (42) into the first-order form of equation (10) to represent the
tangent-wedge portion of the solution yields

(1) X

oy 5 (43)

6 [

poo Pb/poo

or to the second order
2
2 1

APV( ) _ APV( ) ¥ 7 + 1 Apv(l) ()4’)4_)

The parameter that controls the blunt-leading-edge-induced pressure
in equation (41) may be written as follows:

%‘?—E - %ﬁ (15)

Thus for a given value kR JC  the wall pressure (p,, = + Ap.,) is
t w = Po v

a function of im only. This result can be obtained from reference 15
which uses a considerably different development.
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In the second case, the effect of the viscous-induced pressure
increment on the boundary-layer growth must be accounted for. In this
case, equation (20) is written as

_ (l - n)Ku Gx'oo

Ks 5 (h6)
JAY
P, By
POO pOO
The form of equation (15) for large values of Ky 1is taken as
A E 1
:§v = [?(7éf f]Kg and when this equation is substituted in equa-
[e.0]
tion (46) the solution is
2
Ap P + 1 2= \2
v _ 1 by 4 __.______—7(7 ) [(l - n)K)_‘_] (GXDO) 2 (47)

Comparison With Experiment

In order to check these predictions of viscid-inviscid interaction
effects figures 7 and 8 have been prepared which show much of the data
available on flat plates in air and helium. In figure T data obtained on
essentially insulated flat-leading-edge plates in helium from references T,
ik, 16, and 17 plus some new data obtained in the Langley 1ll-inch hyper-
sonic tunnel (see appendix) have been put into groups with approximately
the same value of th/MQC. First it may be noted that there appears, in
general, to be good correlation of the data for given values of the param-
eter kRg M;C, Some random deviations from correlation may be noted; how-
ever, these deviations do not appear to be associated with any particular
Mach number or Reynolds number trend. The sort of deviation or scatter
referred to is illustrated in figures 7(b) and T(c) by the data obtained by
Henderson and Johnston (ref. 7) for values of th/Mgc of about 5 (square
symbols) and 6.6 (diamond symbols). These sets of data (compare flagged
and unflagged symbols) were obtained under almost the | same conditions.

The strong viscid-inviscid interaction theory (eq. (47)) does a good
job of predicting the surface pressures except perhaps at values of
kR MQC below about 1.5 where the pure viscous theory appears to be
. preferable. At values of KkRy MQC where inviscid effects are dominant
(above about 14) the first-order weak viscid-inviscid interaction theory
(eq. (43)) gives much the same answer as equation (41) and both agree
well with the data.

ANy ot e
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Much the same result is obtained for the data available in air
flows shown in figure 8. The data (refs. 17 to 22 plus new data
obtained in the Langley 1ll-inch hypersonic tunnel), in general, show
good agreement with the theories. It should be noted that, although for

the data presented in figure T the lowest value of th/MEC is about k,
the data presented in figure 6 for comparison with pure viscous theory
had very much lower values of th/MEC, values which varied from 0.15

to 0.5 for the M = 5.8 data (ref. 10) and from 0.05 to 0.1 for the
M = 9.6 data of the present tests.

There are, however, some cases where there is a major disagreement
between experiment and theory. This disagreement generally occurs for
date obtained in the region close to the leading edge. Data obtained in
approximately the first two diameters from the leading edge in figure 8 -
are indicated by the filled symbols which generally correspond to the
dats showing the large disagreement. It is in this region glose to the
leading edge that the effect of nose shape is important in determining
the pressure distribution.

Analysis of data in the near-leading-edge region, however, can
also be complicated by low-density effects. This is illustrated in
figure 9 by data obtained in the University of California low density
tunnel by Aroesty (ref. 23) at M= 3.9 and by Schaaf, Hurlbut, and
Talbot (ref. 18) at M =~ 5.7. Arcesty's data (fig. 9(a)) were obtained
at very low Knudsen numbers for the leading-edge thickness and shows
qualitatively the same slope pattern at the larger values of X as is
shown in the pressures measured by Schaaf, Hurlbut, and Talbot (fig. 9(b))
at Knudsen numbers which ranged from relatively high (2.1) to quite low
(0.01). Figure 10 can be used to illustrate that this rather similar
behavior of the data from reference 18 for the widely different Knudsen
numbers is fortuitous. In figure 10 the pressure data of reference 18
are plotted against x/t rather than against the parameter X for the
first 10 diameters downstream of the leading edge of the plate. Shown
also for comparison purposes are Creager's essentially inviscid data
(ref. 20) obtained at a relatively high density on a flat-leading-edge
plate. Note that except for the magnitude the shape formed by the
University of California data for the lower Knudsen numbers (NKh < 0.0h)

is much the same as that of Creager's. The University of California data
at the higher Knudsen numbers (NKn of 0.1 and 0.2) is not data from the

near-leading-edge region and only coincidentally has roughly the same
level of pressure as the data from the first two or three diameters at
the lower Knudsen numbers. This fortuity is further corroborated by the
fact that even though Arocesty and Creager obtained their data at about
the same Mach numbers the maximum pressure ratio obtained by Creager is
about 2 (fig. 10) but by Arocesty is about 3.5 (fig. 9(a)). )
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Oguchi has considered the problem of the prediction of the viscous-
induced pressures in this near-leading-edge region (ref. 24). By uti-
lizing a wedge~like boundary-layer growth in this region, apparently he
has obtained a solution which successfully predicts the pressure levels
obtained at low densities in references 23 and 25.

Extension to the Case of Blunt-Nosed Rods

Equations (43) and (47) may be written in terms of the inviscid param-
eters for both flat plates and rods if for the rod the boundsry layer is
not too thick compared with the radius of the rod and results are obtained
far enough back of the nose so that the three dimensionality of the nose is
not important. For example, if the nose of the rod has a hemispherical
shape then the number of diameters downstream from the nose must be large
compared with =/8 (ref. 1).

This more general form of equation (43) is

/ _1\1/2

(1) [0
Apv - x|t ()48)
P, EE
b

- =2 (%9)

-

in which j = 0 for the planar case and J = 1 for the rod alined with
flow (see eq. (5) of ref. 8). The symbol t represents the leading-edge
thickness in the two-dimensional case and the diameter of the rod in the
cylindrical case.

Calculations based on equation (49) are presented in figures 11 and
12 for air and helium. Figure 11 shows results for the two-dimensional
case utilizing equation (49) with equation (L41). The solid line is the
inviscid case given directly by equation (41). The increments between
the solid curve and the dashed curves represent the viscous-induced pres-
sure increments predicted by equation (49). The parameter G (eq. (3)
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or eq. (14)) takes into account the wall temperature level. In computa-
tions for figure 11, the value of n in equation (49) was taken as con-
stant at a value of 0.6. The error that this introduces can be assessed
by noting that the local value of n 1is the local slope of the curves
in figure 11.

To generalize from the experimental insulated-plate results pre-
sented previously and compared to equations (48) and (49) (or to their
less general forms - equations (43) and (L47)), consider values of the

parameter G//th/MQC. When the value of this parameter is greater than

about 2/5, the effects of leading-edge bluntness are virbtually negligible.
When the value of this parameter is less than about 1/2, blunt-leading-
edge-induced pressure effects are important and the theory developed in
this paper gives a good prediction of the surface pressures. ZFor values
of the correlation parameter less than about 1/10 the viscous-induced
contribution is small to negligible compared with the contribution of

the blunt leading edge to the surface pressures.

An analogous presentation is made for the blunt rod in figure 12.
In this case equation (49) was used with an empirical equation obtained
by Van Hise (ref. 26) based on characteristics solutions for rods with
various bluntnesses. This equation is

Mok
§E =8ga O (50)

00

in which & = 0.060 for 7 = 7/5 and £ = 0.075 for 7 = 5/3. The
solid line in figure 12 is the inviscid case given by equation (50).
Again the increments between the solid curve and the dashed curves
represent the viscous-induced pressure increments predicted by equa-
tion (49). In computations for figure 12, the value of n in equa-
tion (49) was taken as that given by equation (50). (See discussion
before eq. (9).) This introduces some error since, judging from the
computed curves, the value of n for the case with viscous interaction
will always be less than the value of n given by equation (50). In
figure 12, d has been used to represent the t in equation (49) as in
equation (50).

CONCIUDING REMARKS

This paper has shown the simplified thedretical approaches, based
on hypersonic similarity boundary-layer theory, presently available
which allow reasonably accurate estimates to be made of the surface
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pressures on plates on which viscous effects are important. The con-
sideration of viscous effects includes the cases where curved surfaces,
stream pressure gradients, and leading-edge bluntness are important
factors.

In a simple attack on the problem of the effect on the surface
pressure of the interaction between flow fields induced by leading-edge
blunting and boundary-layer displacement effects, equations have been
derived which in general give a good prediction of the surface pressures.
The parameter determining the level of the surface pressure induced on s
two-dimensional flat plate by the interaction of blunt-leading-edge-
induced and boundary-layer-induced flow fields was found to be

G//th/MEC vhere G is a wall temperature and Mach number function in

the laminar-boundary-layer growth equation, k is the nose drag coeffi-
cient, Rt is the Reynolds number based on leading-edge thickness, M,

is the free-stream Mach number, and C is the coefficient in the linear
viscosity law. Correlations of the available data according to this
parameter indicate the effects of leading-edge bluntness are virtually
negligible when the value of this parameter is greater than about 2/5a
When the value of this parameter is less than about 1/2, blunt-leading-
edge~induced pressure effects are important and the theory developed in
this paper gives a good prediction of the surface pressures. For values
of the correlation parameter less than about 1/10 the viscous-induced
contribution is small to negligible compared with the contribution of
the blunt leading edge to the surface pressure.

An extension of the theory to the case of the blunt-nosed rod
alined with the free-stream flow also allows a prediction of the surface
pressure induced by viscid-inviscid interaction for this special three-
dimensional case.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., February 9, 1961.

MWW
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APPENDIX

DESCRIPTION OF NOZZLES AND MODEL USED TO OBTAIN DATA IN THE LANGLEY

11 -TNCH HYPERSONIC TUNNEL

Tunnel and Nozzles

The unpublished data shown in this report were obtained from tests
conducted in the Langley ll-inch hypersonic tunnel. The Mach nuwber of
this blowdown facility can be varied by changing nozzles. In the present
tests, nozzles giving nominal Mach nunbers of 6.8 and 9.6 with air and
18 with helium were used. The Mach number 6.8 air nozzle is a contoured
two-dimensional nozzle machined from Invar to minimize deflection of the
nozzle throat due to thermal gradients. A calibration of this nozzle
may be found in reference 27. The Mach number 9.6 nozzle is a contoured
three-dimensional nozzle with square throat and test section. The cali-
bration for this nozzle is given in reference 2. The Mach number 18
helium nozzle is contoured to obtain uniform flow and has a circular
cross section. A complete description and calibration of this nozzle
and other helium nozzles used at the Langley ll-inch hypersonic tumnel
may be found in references 28 and 29.

Models and Instrumentation

The model used in this investigation is the slab wing with the
various leading edges shown in figure 13. The 36° wedge leading edge
was designed to give sonic velocity behind the shock at Mach number 18
in helium and the 43° wedge leading edge was designed to give approx-
imately sonic veloecity behind the shock at Mach numbers of 6.8 and 9.6
in air. BSurface pressures were measured by means of the aneroid-type
six~-cell recording units described in reference 30. The skin tempera-
tures were obtained from chromel-aslumel thermocouples formed from No. 30
wire. The thermocouple wires were spotwelded to the underside of the
surface and the skin temperatures were recorded on self-balancing
~potentiometers. Some typical wall-temperature distributions are shown
in figure 14. These temperature distributions are ones obtained with
the 0.060-inch-thick flat-face leading edge; however, they are represen-
tative of the distributions obtained for all of the various leading
edges. For the nominal Mach number 6.8 tests, temperature distributions
are shown for two different Reynolds numbers. For the tests at Mach
numbers of 9.6 and 18 the effect of Reynolds number on the temperature
distribution was small and only one distribution for these Mach numbers
is shown.



2l

10.

REFERENCES

. Bertram, Mitchel H., and Feller, William V.: A Simple Method for

Determining Heat Transfer, Skin Friction, and Boundary-Layer Thick-
ness for Hypersonic Laminar Boundary-Layer Flows in a Pressure
Gradient. NASA MEMO 5-24-59L, 1959.

. Bertram, Mitchel H.: Boundary-Layer Displacement Effects in Air at

Mach Numbers of 6.8 and 9.6. NASA TR R-22, 1959. (Supersedes
NACA TN 4133.)

. Beckwith, Ivan E., and Cohen, Nathanlel B.: Application of Similar

Solutions to Calculation of Laminar Heat Transfer on Bodies With
Yaw and Lerge Pressure Gradient in High-Speed Flow. NASA TN D-625,
1961.

. Lees, Lester: Hypersonic Flow. Fifth International Aeronautical

Conference (Los Angeles, Calif., June 20-23, 1955), Inst. Aero.
Sei., Inc., 1955, pp. 241-276.

. Lees, Lester, and Probstein, Ronald F.: Hypersonic Viscous Flow

Over a Flat Plate. Rep. no. 195 (Contract AF 33(038)-250), Aero.
Eng. Lab., Princeton Univ., Apr. 20, 1952.

. Probstein, Ronaeld F.: Interacting Hypersonic Laminar Boundary Layer

Flow Over a Cone. Tech. Rep. AF 2798/1 (Contract AF 33(616)-2798),
Div. Eng., Brown Univ., Mar. 1955.

Henderson, Arthur, Jr., and Johnston, Patrick J.: Fluld-Dynamic
Properties of Some Simple Sharp- and Blunt-Nosed Shapes at Mach
Numbers From 16 to 24 in Helium Flow. NASA MEMO 5-8-59L, 1959.

. Baradell, Donald L., and Bertram, Mitchel H.: The Blunt Plate in

Hypersonic Flow. NASA TN D-408, 1960.

. Chernyi, G. G.: Effect of Slight Blunting of Leading Edge of an

Immersed Body on the Flow Around It at Hypersonic Speeds. NASA
TT F-35, 1960. (From Izvestila Otd. Tekh. Nauk (An USSR), no. U4,
Apr. 1958, pp. 54-66.)

Kendall, James M., Jr.: An Experimental Investigation of Leading-
Edge Shock-Wave - Boundary-Layer Interaction at Mach 5.8. Jour.
Aero. Sci., vol. 24, no. 1, Jan. 1957, pp. 47-56.

N WW



1t.

12,

13.

1k,

15.

16.

17.

18.

19.

20.

21,

25

Bertram, Mitchel H., and Henderson, Arthur, Jr.: Effects of Boundary-
Layer Displacement and Leading-Edge Bluntness on Pressure Distribu-
tion, Skin Friction, and Heat Transfer of Bodles at Hypersonic
Speeds. NACA TN 4301, 1958.

Dryden, Hugh L.: Gegenwartsprobleme der ILuftfahrtforschung. Zs. f.
Flugwilssenschaften, Jahrg. 6, Heft 8, Aug. 1958, pp. 217-233.

Hayes, Wallace D., and Probstein, Ronald F.: Hypersonic Flow Theory.
Academic Press, Inc. (New York), 1959, pp. 333-3Th.

Erickson, Wayne D.: Study of Pressure Distributions on Simple
Sharp-Nosed Models at Mach Numbers From 16 to 18 in Helium Flow.
NACA TN 4113, 1957.

Cheng, H. K., Hall, J. Gordon, Golian, T. C., and Hertzberg, A.:
Boundary-Layer Displacement and Leading-Edge Bluntness Effects
in High-Temperature Hypersonic Flow. Paper no. 60-38, Inst.
Aero. Sci., Jan. 1960.

Vas, Irwin E.: An Experimental Investigation of the Pressure on
a Thin Flat Plate at Hypersonic Speeds. Rep. no. 377 (WADC
TN 57-104, AD 118151), Dept. Aero. Eng., Princeton Univ.,
Mar. 1957.

Bertram, Mitchel H., and Henderson, Arthur, Jr.: Recent Hypersonic
Studies of Wings and Bodies. EPreprint] 1131-60, Am. Rocket Soc.,
May 1960.

Schaaf, S. A., Hurlbut, F. C., and Talbot, L.: Induced Pressures
on Flat Plates in Hypersonic Low Density Flow. ARDC TR 57-47
(AD 113 008), U.S. Air Force, Jan. 25, 1957.

Bertram, Mitchel H.: Viscous and Leading-Edge Thickness Effects
on the Pressures on the Surface of a Flat Plate in Hypersonic
Flow. Jour. Aero. Sci. (Readers' Forum), vol. 21, no. 6, June

195k, pp. L30-431.

Creager, Marcus O0.: ZEffects of Leading-Edge Blunting on the Local
Heat Transfer and Pressure Distributions Over Flat Plates in
Supersonic Flow. NACA TN 4ik2, 1957.

Creager, Marcus O.: The Effect of ILeading-Edge Sweep and Surface
Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate.
NASA MEMO 12-26-58A, 1959.



26

22.

25.

2k,

25.

6.

7.

28.

29,

30.

Kim, Chul-Soo: Experimental Studles on the Hypersonic Flow Past
Plane, Convex and Concave Wedges. Jour. Phys. Soc. of Japan,
vol. 14, no. 6, June 1959, pp. 827-837.

Aroesty, Jerome: Pressure Distributions on Flat Plates at Mach y
and Low Density Flow. Rep. no. HE-150-157 (Ser. 20-120, Contract
N-onr-222(45)), Inst. Eng. Res., Univ. of California, July 28, 1958.

Oguchi, Hakuro: The Sharp Leading Edge Problem in Hypersonic Flow.
ARL TN 60-1%3 (Contract no. AF 33(616)-5442), Div. Eng., Brown
Univ., Aug. 1960.

Nagamatsu, H. T., Sheer, R. E., Jr., and Schmid, J. R.: High Tempera-
ture Rarefied Ultra-High Mach Number Flow Over a Flat Plate.
[Preprint] 1132-60, Am. Rocket Soc., May 1960.

Van Hise, Vernon: Analytic Study of Induced Pressure on Long Bodies
of Revolution With Varylng Nose Bluntness at Hypersonic Speeds.
NASA TR R-78, 1961.

Bertram, Mitchel H.: Exploratory Investigation of Boundary-Layer
Transition on a Hollow Cylinder at a Mach Number of 6.9. NACA
Rep. 1313, 1957. (Supersedes NACA TN 3546.)

Armstrong, William O., and Ladson, Charles L. (With Appendix A by
DPonald L. Baradell and Thomas A. Blackstock): Effects of Varia-
tion in Body Orientation and Wing and Body Geometry on Lift-
Drag Characteristics of a Series of Wing-Body Combinations at
Mach Numbers From 3 to 18. NASA ™ X-73, 1959.

Henderson, Arthur, Jr., and Baradell, Donald L.: Recent Work at
Langley Research Center in the Development of Hypersonlc Helium
Tumnels. Proc. Nat. Symposium on Hypervelocity Techniques
(Denver, Colo.), Inst. Aero. Sci., Oct. 20-21, 1960, pp. 131-141.

McLellan, Charles H., Williams, Thomas W., and Bertram, Mitchel H.:
Investigation of a Two-Step Nozzle in the Langley 1l-Inch Hypersonic
Tunnel. NACA TN 2171, 1950.

DVEACRG T ol g



27

*quoTpesS aansssad UM

MBT SSaU0TU)-~IaLeT-LArepunoq A9TJIBTIWIS oTUosIadAy UT QUSTOTIIS0O JO UOTIABTIBA -*T 2JndTd

‘ u
6- 8- - 9'- - b~ 2- 1= 0.
O _
N. ne = e 1 ~ > - o.—
ﬁ. NL\ S il i =
mvf = ma =
; ILM“H, ¢€/6 = s
T i N
L]
(o)
6k e
P ] = o —— =% T —-—
%.N..n _.M T I\H = il g w
”u.Nj 5 4T 3 & . N'—
e
WJT —
| [T
0 G/l = L _
1 -y
HH f

ceeT~1



28

00!

08

09 0%

o

I-1332

0og

0¢

u  qusuodxs JO UOTYBRTIBA -°Z SINITL

Ot

R

T

T 1T

IHIIH




29

uoTgsuIxoxdde IopIo J9UITY B pue LI0SU] UOTFOBISJUI-BOM J0J
unttey ut 998Td 18T poreTnsur ue uo quawrxadxe UY3TM Lrosyiz Jo uosTIedwo) -°¢ 2JNSTH

!
X
(0h /4 9'¢ 2'¢ 8¢ ve 0o¢ — 9 2l 8 1% oo_
T T T T rr rI1r1rrrrrrrirrrrrrrrr—rrrU 1o 11T 011t iotT1_ 111
q —
P
v 7 -
{'ssaujun|q 37 o4 8np —t'l
JuswaIou! s4nssald parbwysa |
40} pa4oalloo suolDis omy S PR @) —]
L Joafebpem 01 09¢l 12 V ((z1yb?) eanssaud g1
[D90] 40§ UO1}034100 3P0 gl Yiim _
L 181 ogol 12 O £J08Y4 UOIODIBUI-HDBM 418PIO we<< >t ]
‘abpom.G oLl €2 O P P
ogel 12 O ’ —
+m8§ , — 272
Juswiadxy —
—9¢
((c)b?) —
£103Y} UOI}ODIDIUI-YDIM JBPIO pyd | =g
—|0¢
—P'e
— 8¢

: SCCT-1 ) ’ ‘ ’



30

28 — /
26— /
—
S'rrong—mfemci(lgn theory with //
Py 3 b | -
24— E:rfz/’z RK@nb%GX ;7/
— (eq.(19) »
22 0.2 §¥1§ ! /
o
- /
Y
20 . T—w-=
To o\jzgéf/ 5
— G
7 N
18— o
Complete theory,K, =1
— See eq.(18)
16—
14
LV
P,
P .
10—
8 |Second-order weak-
interaction theory
| / Second-order weak-interaction theory
(eq. (%)) with -first order correction for local
pressure (eq-(12))
6
4
2
0 A S P T T T N N I )
0 : 4 8 GX 12 I6 20 24

Figure b.- Comparison of various theories for predicting boundary-layer
displacement effects on a flat plate. y = 5/3; Np. = 1.
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Figure 5.- Static-pressure ratio across oblique shock as a function of the
similarity deflection angle according to hypersonic similarity theory.
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of interaction of boundary-layer displacement and blunt-leading-edge-induced effects

on flat plate.



46

us

1 T T

l

]

77!

8 10

4

3

ded D Dbl
6

2

!
~ .V
\ Q

S -0

|1|lur|,m

i ‘Illllll'llf

8 |03

4

chl bk
]

I
2

e bl b bk e
© © < m Y]

5/3.

(v) 7

Figure 11l.- Concluded.

2cCT-T



b7

TR A

*POX UO S9109JJ9 PIONPUT-ISOU-1UNTC PUB JUaMSOBTASTP JoLBT-LAIBpUNOG JO UOTAOBISAUT JO
aanssaxd oT983s 07 aanssaxd TTBM JO OT4BI U0 109JJ° SUTMOUS 3JI8UD PIZITRISUSy -°gT oJNITq

"G/l =4 (®)
AAEIN
/%
-0l o v g 2 "L 9 v ¢ 2 c.Ol

T h__n_u..:________t_____“ T T T T T ?:_r______;__,_n_

N -

& O .
~ ¢/ =

m./ ]
- // -3 2
B mo.ﬂs_v ’
. &\Py ¥4 1, =
9 - T
- IM =}
— = ol
— oz
B (6t)'ba+(0G) ba “Ai0oay} —jor
[ uoI§oDJBU] PIOSIAUI-pIosiA  Buoalg —
— (0G)ba {pos yuniq) Kioayy —109
[ SO14S1JBJODIDYD  PBLD]3IL09 =
— i Do i—

c L D gy Zool

* 2eeT-1



48

I

T T Irrr T
-

I
IIIHHO 1

T T T T

donl e bbbl

vl e el

IR Illlllllllll 1 I | lln:h !

=L

OO T T T T
N\

] © < N

4 o8

-2 10|
23.46|Ox/d2 3 4 6 10

1073

M2

k

(®) 7 =5/3.

Figure 12.- Concluded.

2eeT-1



I-13%2

z=0
> +z
4.00 x =0 060
—_ +
P 1
X
.
&+
|
+ i+
k.00 1
+ + +
+F 4+
+

+ Pressure Orifices

@ ¥ Thermocouples

Pressure Orifice Locations

X 2

0.105 0 i l

5;272 —.232 \\'\\

+300 +,588 T s

«359 +.392 .100

=595 . 392

.886 +.196

1.496 0 ;

1.792 -, 400 .O4SR

1.792 0

1.792 +.250

2.002 0 \
2,392 o

2,694 -.250

2.65k [+]
. 2,694 +.400 .060

2,992 0 °

3.295 0 l '/36.

3.598  +.400 T\
3.898 0 :

Thermocouple Locations

.060.
Pl

0
2.875 [
3.50 0 T\

Figure 13.- Sketch of flat-plate model used in tests in Langley 1l-inch
hypersonic tunnel. All linear dimensions are in inches.

x 2z




M R,
3 6.6 3,300
. T
O 6.8 18,600 ©
0 9.6 6,580
< 18.3 32,500
1600 : M= 9.6
1400
1200
—_ M= 6.8
1000
T, snd T,
SR 800 E%::::\
= ‘ ' M= 18,3
400
200
o | | | [ | | | | |
0 1 2 3 I S

x, in.

Figure 1b.- Temperature distribution on flat plate with the

0.060-inch-thick flat-face leading edge.

NASA - Langley Field, va. L1332

2eCT~1





