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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-798 

SOME SIMPL;E SOLUTIONS TO THE PROBLEM OF 

PREDICTING BOUNDARY-LAYER SELF-INDUCED PRESmTRES 

By Mitchel H. Bertram and Thomas A. Blackstock 

SUMMARY 

Simplified theoretical approaches are shown, based on hypersonic 
similarity boundary-layer theory, which allow reasonably accurate esti- 
mates to be made of the surface pressures on plates on which viscous 
effects are important. The consideration of viscous effects includes 
the cases where curved surfaces, stream pressure gradients, and leading- 
edge bluntness are important factors. 

INTRODUCTION 

As the Mach number increases into the hypersonic range large pres- 
sure and temperature gradients can be induced on a flat plate by 
leading-edge bluntness and boundary-layer displacement effects. Any 
curvature to the plate surface simply adds still another complicating 
factor to the flow picture, and there may be any combination of these 
factors. In addition to the effect of these induced pressures on 
loading, the increased pressures can have an important effect on the 
skin friction and heat transfer on the plate surface. 

The purpose of this paper is to show the simplified theoretical 
approaches which are presently available and which allow reasonably 
accurate estimates to be made of the surface pressures on plates on 
which viscous effects are important and where surface curvature, stream 
pressure gradients, and leading-edge bluntness can be contributory 
factors. 

SYMBOLS 

a constant 



diameter of cylinder 

f f T ~ ,  T,, Y, G) in equation for laminar boundary- layer growth 
(see eqs. (3) and (14)) 

index number ( 0  for planar model, 1 for cylindrical model) 

hypersonic similarity deflection angle (& a deflection angle) 

hypersonic similarity deflection angle using slope at edge of 
boundary layer 

coefficient in hypersonic-similarity-theory-laminar-boundary- 
layer growth equation (see eq. (2) and fig. 1) 

nose drag coefficient 

Mach number 

exponent in power equation for surface coordinates of curved 

plate (, a xm) 

Knudsen number 

Prandtl number 

exponent in power equation for surface pressure variation 
with x 

ratio of local surface pressure to free-stream static pressure 

pressure 

Reynolds number 

Reynolds number based on undisturbed free-stream conditions 
and leading-edge thickness or rod diameter, respectively 

absolute temperature 

leading-edge thickness 

distance along axis of flat plate from leading edge 

model span 



a angle of inclination of flat plate relative to free-stream, 
flow direction 

s 

7 ratio of specific heats 

6 boundary-layer thickness (see eq. (2)) 

E correction factor for 7 in bluntness-induced-pressure 
equation (see eq. (41)) 

CL dynamic viscosity 

5 coefficient in induced-pressure equation for rod ( see eq . (30) ) 
- 
X 

- 3 / T  
viscous interaction parameter X I %- - 

(1) local surface slope 

Subscripts: 

b nose bluntness induced 

i inviscid 

r adiabatic wall 

v viscous induced 

W wall 

x surf ace distance 

02 free stream 

0 stagnation 

2 local inviscid pressure 

A prime designates the first derivative with respect to the subscript. 

Superscripts in parentheses refer to the order of an equation devel- 
oped in series. 



SOME SPECIAL SOLUTIONS FOR THE SELF-INDUCED 

PRESSURE GRADIENT 

Useful results may be obtained if the similarity theory for a 
boundary layer in hypersonic flow (ref. 1) is used as a basis for 
predicting self-induced pressures to a higher order than may be obtained 
from the so-called "weak-interaction" or "strong-interaction" solutions. 
(see ref. 2 for a discussion of these theories .) First, consider the 
boundary-layer thickness itself in hypersonic flow. To satisfy the 
requirements of this hypersonic similarity theory, a pressure variation 
at the edge of the boundary layer is postulated as follows: 

Then according to the hypersonic similarity thecrry (ref. 1) the boundary- 
layer thickness is (assuming Prandtl number unity in the derivation) 

where 

and ~4( y , n) is the coefficient determined from hypersonic similarity 
theory. The variation of K4 with negative exponents in the pressure- 
variation law (favorable pressure gradients) is shown in figure 1. The 
curves shown are different from those in reference 1 because additional 
values from reference 3 of the integral function used to obtain K4 have 
been utilized to obtain more accurate fairings of the integral function. 

If hypersonic tangent-wedge theory (ref. 4) with $he slope of the 
outer edge of the boundary layer as the effective wedge angle is assumed 
to be sufficient to determine local surface pressures then 



The boundary-layer slope i s  upon different iat ion of equation (2) (with 
K4 assumed t o  be constant ) 

or i n  terms of the Lees-Probstein interaction parameter 2 ( r e f .  5) 
where 

the hypersonic s imilar i ty  deflection angle may be written 

Now consider which values of the pressure-law exponent n are  of 
in t e res t  i f  self-induced pressures only are t o  be considered. The 
variation of the loca l  value of the exponent n with self-induced pres- 
sure r a t i o  P i s  shown i n  figure 2. The value of n i s  zero at  P = 1 
and at  increasingly large pressures the curve of n i s  asymptotic t o  
-0.5, the value obtained from strong-interaction theory. The values of 
n shown in-figure 2 were obtained by assuming tha t  the pressure i s  
l inear  i n  X with the following form (developed i n  more d e t a i l  i n  a 
l a t e r  section) 

since f o r  any function (of x, say) the  loca l  value of the exponent i n  a 

power-law f i t  t o  the  function may be expressed as n = Xf ' then f o r  
f (x) 

equation (8) f (x) i s  ( 1  + s) and thus the exponent n a s  a function 
of pressure r a t i o  i s  given by 



Figure 1 shows that in helium (y = 513) the coefficient K4 is 

essentially unity (error generally less than 2 percent) in the range 
0 > n > -0.5 and in air (y = 715) the maximum deviation from unity is 
about 10 percent. 

Weak Interactions 

First consider equation (7) in the light of weak-interaction 
theory. From hypersonic small-perturbation theory ( see ref. 4) 

Assume that a first-order correction for the local pressure is sufficient 
in equation (7) . That is, the value of P to be inserted in equation (10) 
will be obtained from the first-order solution to the weak-interaction 
boundary-layer problem (ref. 5) where 

Substituting equation (11) into equation (7) with (K~ = 1) and then this 

combination into equation (10) results in the following relation 

Equation (12) may be compared with the original Lees-Probstein equa- 
tion (ref. 5) for second-order weak interaction which in the present 
nomenclature may be written as follows: 



Equation (13) may be derived readily from equation (10) by utilizing 
equation (7) and n = 0. 

Figure 3 has been prepared to show the difference between the use 
of equations (12) and (13) in the case mentioned previously where the 
boundary-layer thickness coefficient K4 is essentially unity, that is, 
the flat plate in helium. In addition to the Prandtl number one solution, 
curves for Prandtl number 0.725 are also shown for which the preceding 
development is taken to hold except that G is given by the following 
equation adapted from reference 6: 

The reduction in induced effects due to the first-order correction 
for local pressure is certainly significant and appears to be corrobo- 
rated by experimental results obtained by Henderson and-Johnston on a 
5' wedge tested in helium (ref. 7). In figure 3 both X and the 
pressure-difference ratio are based on the inviscid conditions that 
would occur on a wedge having a sharp leading edge were there no boundary 
layer present. For the two stations nearest the leading edge the experi- 
mental data are shown both as measured and with an increment in pressure 
subtracted to account for leading-edge bluntness. This increment 
ascribed to leading-edge-bluntness effects is estimated from a correla- 
tion of characteristics solutions for the flat plate with a sonic-wedge 
leading edge at angle of attack (ref. 8) by parameters suggested by 
Chernyi (ref. 9 )  and based on the assumption that the boundary-layer- 
induced and bluntness-induced effects may be treated independently. The 
effect of leading-edge bluntness is indicated to be small. The 10' - wedge 
data also shown on this plot were obtained at too low a value of X to 
aid in distinguishing between theories considering data uncertainties. 

Strong Interactions 

Thus far the discussion has been restricted to considering rela- 
tively small induced pressures, that is, restricted more or less to the 
weak-interaction regime of self-induced pressures. Assuming that the 
tangent-wedge approach is still applicable, a more general approach, 
insofar as the basic pressure equation used is concerned, will now-be 
attempted. In this case the hypersonic equation given by Lees (ref. 4) 



will be used. Tiis equation is in terms of boundary-layer slope 

Based on equation (7), with K4 = 1 and with equation (15), calcula- 
tions have been carried out for helium. These calculations were made by 
iteration for a given value of X by assumigg for each iteration that 
the pressure ratio is a linear function of X starting with the result 
from strong-interaction theory. (See refs . 4 and 1. ) In this way the 
results are easily calculated. Iterations are obtained by averaging the 
assumed pressure ratio and the pressure ratio resulting from this assump- 
tion. This average is used to start the next iteration. The results are 
shown in figure 4. The convergence is rapid. The use of the more accu- 
rate pressure law (eq. (15)) makes only a small difference from the 
results obtained by using the expansion of equation (15) for large or 

The differential equation which results when equation (16) is substituted 
into equation (7) may be solved to give the asymptotic solution known as 
strong-interaction theory 

where G is given by equation (3) and the required values of K4 are 
given in figure 1. A comparison of the complete hypersonic equation 
(eq. (15) ) with its "strong" shock approximation (eq. (16) ) and its 
"weak" shock approximation (eq. (lo)), is shown in figure 5. 

The result of the iteration procedure utilizing equation (15) and 
equation (7) will hereafter be referred to as the "complete theory" (for 
the sake of briefness even though fundamental completeness is not 
implied). The results from the complete theory are the same as those 
from equation (12) for values of G: less than approximately 3. For 
GY greater than approximately 1 the curve for the variation of P with 
G is essentially linear and may be accurately represented by the .. 
equation 



Interestingly enough, f o r  pract ical  purposes t h i s  resul t  could have been 
obtained f r m  eqwtion (17) i f  K4 were assumed t o  be unity and 

P(') = P - 1, even though equation (16) deviates markedly from equa- 
t ion  (15) at  the lower pressure ratios.. For P > 4 the induced-presssure 
r a t i o  can i n  general be taken as  

while fo r  P < 4 equation (12) should be adequate and, i n  general, data 
should l i e  i n  the region defined by equations (12) and (19). A compari- 
son between equations (12), (13), (19), and the complete theory (essen- 
t i a l l y  eq. (18) i s  shown i n  f igure 4. 

Consider now the insulated plate  i n  a i r  where the value of the  
coefficient K4 deviates by an appreciable amount from the value unity. 
(See f i g .  1.) Here the f ac t  tha t  K 4  i s  greater than 1 off sets, t o  

some extent, the resul t  of P > 1 on the boundary-layer thickness. (see 
eq. (2) .) Thus i n  the low X range the actual  induced pressures w i l l  be 
expected t o  be between the  values given by equations (12) and (13), but 
closer t o  the  values from equation (12). A s  increases the actual  
pressure would be expected t o  approach the  complete theory with a con- 
s tant  value of K4 = 1.1 which i s  essent ial ly  equation (19). 

These various theories are  shown i n  figure 6 with applicable data. 
Shown are Kendall's data from an insulated f l a t  plate  a t  IEa, = 5.8 
( re f .  10) and data obtained i n  the Langley 11-inch hypersonic tunnel at  
I$.,, = 9.6 on a noninsulated plate  with a temperature gradient f o r  which 
the data have been corrected t o  the insulated plate  case a s  described i n  
reference 2. A t  b&, = 9.6 data both with the plate  surface alined with 
the flow and at an angle of at tack have been obtained. (A portion of 
t h i s  data has previously been reported i n  r e f s .  11, 12, and 13.) The 
data f o r  zero angle of attack extend the data given i n  reference 2 and 
are  believed t o  be more accurate while angle of attack has been used t o  - 
extend the range of X and t o  give an additional check on the val idi ty 
of the correction t o  insulated plate  conditions. A t  angle of attack the 
loca l  inviscid Mach number departs appreciably from 9.6 as shown i-n 
f igure 6(b).  The original  data were picked a t  a time when the temperature 
dis tr ibut ion on the plate  was the  same f o r  a l l  Reynolds numbers and 



angles of attack. This temperature dis tr ibut ion i s  shown i n  references 11 
and 12. " 

A t  zero angle of attack ( f ig .  6 (a ) )  there i s  good agreement between 
Kendall's data and present data i n  the range where they overlap. The data 
points i n  general a re  s l ight ly  above the curve fo r  weak-interaction theory 
with the loca l  pressure correction (eq. (12)) but approach - the curve f o r  
"complete theory" with K4 = 1.1 at the higher values of X. The pressure 
data a t  angles of attack ( f ig .  6(b) ) show good - agreement with the data at  
zero angle of attack, a t  l e a s t  f o r  values of X up t o  about 10, and indi- L 
cate tha t  the complete theory with K4 = 1.1 (dr eq. (19) ) i s  adequate a t  1 
leas t  i n  the range of shown. 

BOUNDARY- LA=- muCED EFFECTS I N  A NON- SEm- INDUCED 

F'RESSURE GRADIENT 

Strong Non-Self-Induced Pressure Gradient 

Effect of wall curvature .- Fi r s t ,  with equation (1) a s  a requirement, 
the slope of the edge of the boundary layer (eq. (4))  i n  hypersonic simi- 
l a r i t y  form may be written a s  

Then assume tha t  the boundary layer  i s  growing on a surface of suff icient  
curvature so tha t  equation (16) well represents the pressures induced by 
the surface slope alone. In general, a change i n  the  slope of the sur- 
face induces a pressure r i s e  above the  pressure tha t  would have existed 
as  follows (from a f i n i t e  perturbation on eq. (16)): 

where K = M,w. I f  LY( r Q and K6 i s  assumed t o  be small then equa- 
t ion  (21) with equations (20) and (16) gives 



which, since 2(M)K >> (M)*, holds for 

where n is obtained from 2 = f (m) in the form of equation (16) . 
'p, 

Equation (22) does not reduce to equation (17) when n = -112, since 
the self-induced effect is derived as a small perturbation on a pre- 
existing pressure gradient. 

If the ratio of the local wall pressme, with the self-induced effect 
included, to the inviscid local pressure is desired equation (22) may be 
written as 

which has the same limitation as equation (22) . Now for hypersonic flow 

For an oblique shock compression with pressure ratios not too close to 
unity 

If, further, the unity term in equation (25) can be neglected then 



Then in terms of inviscid local conditions equation (23) with equa- 
tion (26) becomes 

Equation (23) may also be presented in terms of surface slope by using 
equation (16) or L 

1 

The externally imposed pressure gradient.- The case where the pres- 
sure gradient is externally imposed may also be simply treated. Again it 
is assumed that the increase in surface pressure i s  s-&all compared-to the 
inviscid local pressure. The local pressure ratio is assumed to be given 
by the first-order form of equation (lo), which is 

where the required form of equation ( 7 )  is 

and with isentropic external flow or isentropic compression on a curved 
plate 



in which the variation of the local inviscid pressure ratio p2/poD9 with 
surface distance has the form of equation (1) and the value of (1 - n ) ~ ~  
is obtained from this pressure law. In this case a, refers to some 
convenient reference condition such as the local free-stream Mach number 
at the leading edge. Equation (29)  with equation (31) gives the result 

With reference to equation (32) the following point is made; that is, 
by hypersonic approximation for an isentropic compression, equation (24) 
is 

so that equation (28) may be written as 

Equation (34) has the same form as equation (27) and gives not too dif- 
ferent a result even though the development of the two equations was 
somewhat different. Note that, with n = 0 and p2 = G, equation (34) 
reduces to equation (13) (even to second order, it can be shown). Thus 
equation (34) is essentially the form of weak-interaction theory for 
self-induced effects of a boundary layer growing in a non-self-induced 
pressure gradient and the term (1 - n)~4 is the correction term due to 
the external gradient. 



Shown here are values of 
(1 - n ) ~ ~  for some arbitrary 

values of n for favorable 
pressure gradients on an insu- 
lated plate in both air and 
helium. Other temperature 
ratios and values of n for 
air and helium or other values 
of y may easily be calcu- 
lated by using figure 1 and 
reference 1. 

Weak Non-Self-Induced Pressure Gradient 

It is clear that with a power-law variation of pressure with sur- 
face distance the boundary-layer growth and hence the self-induced 
effects depend upon the local conditions with a generally small, but 
not necessarily negligible, correction due to the exponent in this 
power-law variation of pressure. This dependence on local conditions 
will now be used to investigate the case where the change in local 
pressure, whether by external causes or changes in surface slope, is 
small compared to the local self-induced pressure. Based on inviscid 
local conditions, with the exponent in the pressure law having negli- 
gible deviation from n = -112 (the strong-interaction case), equa- 
tion (17) may be written 

where the subscript 2 indicates local inviscid conditions and the sub- 
script w indicates surface conditions. Equation (35) written in terms 
of reference conditions designated by the subscript w is 

With hypersonic flow and isentropic pressure changes, equation (33)- may 
be applied from which 



and for small pressure deviations from the reference conditions 

where Ap = p2 - pw and, to the present approximation, equation (38) 
applies equally well for pressure changes caused by weak shocks. Equa- 
tion (36) with equation (38) becomes 

in which p w,, designates the strong-interaction self-induced pressure 

calculated for free-stream conditions which are the same as the refer- 
ence conditions w .  If the inviscid pressure change aPIPm is due to 
a small surface inclination, then in terns of the hypersonic similarity 
parameter K = Mwm 

Equations (39) and (40) allow an estimate to be made of such factors as 
(1) the effects of small errors in evaluating free-stream Mach number 
or in setting the angle of attack of a flat plate, (2) the effects of 
small body curvatures, and (3) the possible effects of external pressure 
gradients. Factors (1) and (2) are straightforwardly obtained from 
equations (39) and (40). Factor (3) is interesting because of the pos- 
sibility of using equation (39) to evaluate the effects of longitudinal 
pressure gradients in conical nozzles such as those which have been used 
to provide much of the information on self-induced effects in helium. 
Data have been obtained in 1-inch- and 2-inch-diameter conical helium 
nozzles at Langley Research Center (refs. 7 and 14) for which the Maeh 
number increases about 0.5 in the length of the measuring stations on a 
flat plate. These tests were performed at Mach numbers between 16 and 24. 



In the case of Erickson's tests (ref. 14) the correlating parameters were 
evaluated at tunnel-empty local conditions, corresponding to the sub- 
script 2 in the preceding development. In the investigation by Henderson 9 

and Johnston (ref. 7) the correlating parameters were evaluated at the 
tunnel-empty conditions at the leading edge of the model. Equation (39) 
indicates a difference between the two methods of evaluation of the slope 
of P = ~(7) of at most about 4 percent. Also, the P(T) line from a 
leading-edge-condition evaluation will not pass through the P = 1, 

= o point. 

THE BI3UNTNESS- INDUCED-VISCOUS- INDUCED INTERACTION PR0BI;EM 

Theoretical Approach 

The problem of the interaction between bluntness-induced and 
boundary-layer-induced flow fields on a flat plate is of considerable 
importance. One ayproach to this problem is suggested by the work of 
Baradell and Bertram (ref. 8). In this paper, by means of the charac- 
teristics theory, surface pressure distributions on curved plates with 
surface coordinates given by the equation y a xm were investigated. 
It was found that addition of the pressure increment due to local plate 
angle (tangent-wedge theory) and the pressure increment due to the 
blunt leading edge (as on a flat plate) gave a result which agreed well 
with the characteristics theory. This blunt-leading-edge pressure-ratio 
contribution for &/pW 2 1.2 is given accurately by 

where E is a small correction term to the function of 7 shown above 
which can be represented by E = 1 - [0.0048/(y - 1)g . Equation (41) is 
found to give good results from constant 7 of 6/5 to 915 based on the 
results in reference 8. 

The curved plate in the problem of reference 8 is replaced by the 
displacement thickness of the boundary layer. The growth of this 
boundary layer is assumed to be controlled by the pressures on the plate 
and by the undisturbed free-stream Mach number; that is, no account is 
taken of the entropy jump at the leading edge. The decrease in Mach num- 
ber associated with the leading-edge entropy jump is assumed to be com- 
pensated for by the decrease in Reynolds number. 

\ 

Two different cases for the problem of surface pressures induced by 
blunt-leading-edge viscous interaction will be shown. In the first case 



the blunt-leading-edge-induced pressures are assumed to be large com- 
pared with the viscous-induced increment in pressure. In the second 
case the viscous-induced increment in pressure is too large to be ignored 
and contributes significantly to the induced effect on boundary-layer 
growth. If the blunt-leading-edge-induced pressures are assumed to be 
large cmpared with free-stream pressure and much larger than the viscous- 
induced increment, then the slope of the edge of the boundary layer in 
hypersonic similarity form may be given by equation (20) in the following 
form (n = -213 from eq. (41)): 

Taking the coefficient K4 as unity (see fig. 1) and substituting equa- 
tion (42) into the first-order form of equation (10) to represent the 
tangent-wedge portion of the solution yields 

or to the second order 

The parameter that controls the blunt-leading-edge-induced pressure 
in equation (41) may be written as follows: 

Thus for a given value kRt/$C! the wall pressure pw = q, + nPv) is ( 
a function of only. This result can be obtained from reference 15 
which uses a considerably different development. 



In  the second case, the effect of the viscous-induced pressure 
increment on the boundary-layer growth must be accounted fo r .  In  t h i s  
case, equation (20) i s  written a s  

The form of equation (15) for  large values of Q i s  taken as  

and when t h i s  equation i s  substituted i n  equa- 
pw 

t ion  (46) the solution i s  

Comparison With Experiment 

In order t o  check these predictions of viscid-inviscid interaction 
ef fec ts  figures 7 and 8 have been prepared which show much of the data 
available on f l a t  plates  i n  a i r  and helium. In  figure 7 data obtained on 
essent ial ly  insulated flat-leading-edge plates  i n  helium from references 7, 
14, 16, and 17 plus some new data obtained i n  the Langley 11-inch hy-per- 
sonic tunnel (see appendix) have been put in to  groups with approximately 
the same value of kRt/@C. F i r s t  it may be noted tha t  there appears, i n  
general, t o  be good correlation of the data f o r  given values of the param- 
e t e r  kIlt/$C. Some random deviations from correlation may be noted; how- 
ever, these deviations do not appear t o  be associated with any part icular  
Mach number or Reynolds number trend. The sor t  of deviation or scat ter  
referred t o  i s  i l lu s t r a t ed  i n  figures 7(b) and 7(c) by the data obtained by 
Henderson and Johnston ( r e f .  7) f o r  values of kRt/@C of about 5 (square 
symbols) and 6.6 (diamond symbols). These s e t s  of d d a  (compare flagged 
and unflagged symbols) were obtained under almost the '  same conditions. 

The strong viscid-inviscid interaction theory (eq. (47)) does a good 
job of predicting the surface pressures except perhaps a t  values of 
k.Rt/@c below about 1.5 where the  pure viscous theory appears t o  be 
prefergble. A t  values of kRt/GC where inviscid effects  are dominant 
(above about 14) the f i rs t -order  weak viscid-inviscid interaction theory 
(eq. (43)) gives much the same answer a s  equation (41) and both agree 
well with the data. 



Much the same resul t  i s  obtained f o r  the data available i n  a i r  
flows shown i n  figure 8. The data ( refs .  17 t o  22 plus new data 
obtained i n  the Langley 11-inch hypersonic tunnel), i n  general, show 
good agreement with the theories. It should be noted that,  although f o r  

the data presented i n  figure 7 the lowest value of k.Rt/Gc i s  about 4, 

the data presented i n  figure 6 f o r  coqarison with pure viscous theory 

had very much lower values of kRt/~?c, values which varied from 0.15 
' t o  0.5 for  the M = 5.8 data ( r e f .  10) and from 0.05 t a  0.1 f o r  the 

M = 9.6 data of the present t e s t s .  

There are, however, some cases where there i s  a major disagreement 
between experiment and theory. This disagreement generally occurs f o r  
data obtained i n  the  region close t o  the leading edge. Data obtained i n  
approximately the f i r s t  two  diameters fromthe leading edge i n  figure 8 
are indicated by the f i l l e d  symbols which generally correspond t o  the  
data showing the large disagreement. It i s  i n  t h i s  region close t o  the 
leading edge tha t  the ef fec t  of nose shape i s  important i n  determining 
the pressure distribution. 

Analysis of data i n  the near-leading-edge region, however, can 
also be complicated by low-density effects .  This i s  i l lu s t r a t ed  i n  
figure 9 by data obtained i n  the  University of California low density 
tunnel by Aroesty ( r e f .  23) at  M = 3.9 and by Schaaf , Hurlbut, and 
Talbot (ref.  18) a t  M = 5.7. Aroestyl s data ( f i g  . g(a)) were obtained 
a t  very low Knudsen numbers fo r  the  leading-edge thickness and shows 
qual i ta t ively the same slope paktern at  the larger values of a s  i s  
shown i n  the pressures measured by Schaaf, Hurlbut, and Talbot ( f i g .  9(b)) 
at Knudsen numbers which ranged from re la t ive ly  high (2.1) t o  quite low 
(0.01). Figure 10 can be used t o  i l l u s t r a t e  tha t  t h i s  rather  similar 
behavior of the  data from reference 18 f o r  the widely different  Knudsen 
numbers i s  fortuitous.  I n  figure 10 the pressure data of reference - 18 
are plotted against x / t  rather than against the parameter X for  the 
f i r s t  10 diameters downstream of the  leading edge of the plate .  Shown 
also f o r  comparison purposes are  Creagerls essent ial ly  inviscid data 
( r e f .  20) obtained at  a re la t ive ly  high density on a flat-leading-edge 
plate .  Note tha t  except f o r  the magnitude the shape formed by the 
University of California data f o r  the  lower Knudsen numbers (Nm 5 0.04) 
i s  much the same as  tha t  of Creager's. The University of California data 
a t  the higher Knudsen numbers (NK, of 0.1 and 0.2) i s  not data from the 
near-leading-edge region and only coincidentally has roughly the same 
level  of pressure a s  the data from the first t w o  or three diameters at 
the lower Knudsen numbers. This fo r tu i ty  i s  further  corroborated by the 
fac t  tha t  even though Aroesty and Creager obtained t h e i r  data a t  about 
the same Mach numbers the maxim pressure r a t i o  obtained by Creager i s  
about 2 ( f ig .  10) but by Aroesty i s  about 3.5 ( f ig .  9(a))  . 



Oguchi has considered the problem of the prediction of the viscous- 
induced pressures in this near-leading-edge region (ref. 24) . By uti- 
lizing a wedge-like boundary-layer growth in this region, apparently he 
has obtained a solution which successfully predicts the pressure levels - 
obtained at low densities in references 23 and 25. 

Extension to the Case of Blunt-Nosed Rods 

Equations (43) and (47) may be written in terms of the inviscid param- 
eters for both flat plates and rods if for the rod the boundary layer is 
not too thick compared with the radius of the rod and results are obtained 
far enough back of the nose so that the three dimensionality of the nose is 
not important. For example, if the nose of the rod has a hemispherical 
shape then the number of diameters downstream from the nose must be large 
compared with a18 (ref. 1) 

This more general form of equation (43) is 

and of equation (47) is 

in which j = 0 for the planar case and j = 1 for the rod alined with 
flow (see eq. (5) of ref, 8). The symbol t represents the leading-edge 
thickness in the two-dimensional case and the diameter of the rod in the 
cylindrical case, 

Calculations based on equation (49) are presented in figures 11 and 
12 for air and helium. Figure 11 shows results for the two-dimensional 
case utilizing equation (49) with equation (41). The solid line is the 
inviscid case given directly by equation (41). The increments between 
the solid curve and the dashed curves represent the viscous-indu~e~pres- 
sure increments predicted by equation (49). The parameter G (eq. (3) 



or eq. (14)) takes into account the wall temperature level. In computa- 
tions for figure 11, the value of n in equation (49) was taken as con- 
stant at a value of 0.6. The error that this introduces can be assessed 
by noting that the local value of n is the local slope of the curves 
in figure 11. 

To generalize from the experimental insulated-plate results pre- 
sented previously and compared to equations (48) and (49) (or to their 
less general forms - equations (43) a ~ d  (47) ), consider values of the 

parameter GI/*. When the value of this parameter is greater than 

about 213, t6e effects of leading-edge bluntness are virtually negligible. 
When the value of this parameter is less than about 1/2, blunt-leading- 
edge-induced pressure effects are important and the theory developed in 
this paper gives a good prediction of the surface pressures. For values 
of the correlation parameter less than about 1/10 the viscous-induced 
contribution is small to negligible compared with the contribution of 
the blunt leading edge to the surface pressures. 

An analogous presentation is made for the blunt rod in figure 12. 
In this case equation (49) was used with an empirical equation obtained 
by Van Rise (ref. 26) based on characteristics solutions for rods with 
various bluntnesses. This equation is 

in which 5 = 0.060 for y = 715 and 5 = 0.075 for y = 513. The 
solid line in figure 12 is the inviscid case given by equation (50). 
Again the increments between the solid curve and the dashed curves 
represent the viscous-induced pressure increments predicted by equa- 
tion (49) . In computations for figure 12, the value of n in equa- 
tion (49) was taken as that given by equation (50). (see discussion 
before eq. (9) . ) This introduces some error since, judging from the 
computed curves, the value of n for the case with viscous interaction 
will always be less than the value of n given by equation (50) . In 
figure 12, d has been used to represent the t in equation (49) as in 
equation (50). 

CONCLUDING REMARKS 

This paper has shown the simplified theoretical approaches, based 
on hypersonic similarity boundary-layer theory, presently available 
which allow reasonably accurate estimates to be made of the surface 



pressures on plates  on which viscous effects  a re  important. The con- 
sideration of viscous effects  includes the cases where curved surfaces, 
stream pressure gradients, and leading-edge bluntness are  important 
factors .  

I n  a simple attack on the problem of the effect  on the surface 
pressure of the interaction between flow f i e l d s  induced by leading-edge 
blunting and boundary-layer displacement effects, equations have been 
derived which i n  general give a good prediction of the smface pressures. 
The parameter determining the level  of the surface pressure induced on a 
two-dimensional f la t  plate  by the interaction of blunt-leading-edge- L 
induced and boundary-layer-induced flow f i e l d s  was found t o  be 1 

GI,,/*- where G i s  a w a l l  temperature and Mach number function i n  
7 3 
J 

the laminar-boundary-layer growth equation, k i s  the  nose drag coeffi- 2 
cient, Rt i s  the Reynolds number based on leading-edge thickness, 

i s  the free-stream Mach number, and C i s  the coefficient i n  the l inear  
viscosity law. Correlations of the  available data according t o  t h i s  
parameter indicate the effects  of leading-edge bluntness are v i r tua l ly  
negligible when the value of t h i s  parameter i s  greater than about 213, 
When the value of t h i s  parameter i s  l e s s  than about 112, blunt-leading- 
edge-induced pressure effects  are  important and the theory developed i n  
t h i s  paper gives a good prediction of the surface pressures. For values 
of the correlation parameter l e s s  than about 1/10 the viscous-induced 
contribution i s  small t o  negligible compared with the contribution of 
the blunt leading edge t o  the surface pressure, 

An extension of the theory t o  the case of the blunt-nosed rod 
alined with the free-stream flow a lso  allows a prediction of the swface 
pressure induced by viscid-inviscid interaction fo r  t h i s  spec ia l three-  
dimensional case, 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va . , February 9, 1961. 



APPENDIX 

DESCRIFTION OF NOZZLES AND MODEL USED TO OBTAIN DATA IN TRE LANGLEX 

U - I N C H  HYPERSONIC TUNNEL 

Tunnel and Nozzles 

The unpublished data shown i n  t h i s  report were obtained from t e s t s  
conducted i n  the Langley 11-inch hypersonic tunnel. The Mach number of 
t h i s  blowdown f a c i l i t y  can be varied by changing nozzles. In the present 
t e s t s ,  nozzles giving nominal Mach numbers of 6.8 and 9.6 with a i r  and 
18 with helium were used. The Mach number 6.8 a i r  nozzle i s  a contoured 
two-dimensional nozzle machined from W a r  t o  minimize deflection of the 
nozzle throat due t o  thermal gradients. A calibration of t h i s  nozzle 
may be found i n  reference 27, The Mach number 9.6 nozzle i s  a contoured 
three-dimensional nozzle with square throat and t e s t  section. The ca l i -  
bration fo r  t h i s  nozzle i s  given i n  reference 2. The Mach number 18 
helium nozzle i s  contoured t o  obtain uniform flow and has a c ircular  
cross section. A complete description and calibration of t h i s  nozzle 
and other helium nozzles used a t  the Langley 11-inch hypersonic tunnel 
may be found in references 28 and 29. 

Models and Instrumentat ion 

The model used i n  this investigation i s  the  slab wing with the 
various leading edges shown i n  figure 13. The 36O wedge leading edge 
was designed t o  give sonic velocity behind the shock a t  Mach number 18 
i n  helium and the 43' wedge leading edge was designed t o  give approx- 
imately sonic velocity behind the shock at Mach numbers of 6.8 and 9.6 
i n  a i r .  Surface pressures were measured by means of the aneroid-type 
six-cell  recording uni t s  described i n  reference 30. The skin tempera- 
tures  were obtained from chromel-alumel thermocouples formed from No. 30 
wire, The thermocouple wires were spotwelded t o  the underside of the 
surface and the skin temperatures were recorded on self-balancing 
potentiometers. Some typical  wall-temperature dis t r ibut ions are shown 

' i n  figure 14. These temperature dis t r ibut ions are ones obtained with 
the 0.060-inch-thick flat-face leading edge; however, they are represen- 
t a t i v e  of the dis t r ibut ions obtdned f o r  all of the various leading 
edges. For the  nominal Mach number 6.8 t e s t s ,  temperature dis t r ibut ions 
a re  shown f o r  two different  Reynolds numbers. For the t e s t s  a t  Mach 
numbers of 9.6 and 18 the e f fec t  of Reynolds number on the temperature 
dis t r ibut ion was small and only one dis t r ibut ion f o r  these Mach num'tjers 
i s  shown. 
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Secondorder weak-I nteractlon theory 
w~th  .f~rst order correct~on for loca I 
pressure (eq(12)) 

Figure 4.- Comparison of various theories for predicting boundary-layer 
displacement effects on a flat plate. y = 513; Npr = 1. 



Figure 5.- Static-pressure ratio across oblique shock as a function of the 
similarity deflection angle according to hypersonic similarity theory. 
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(b) % i n  range from about 1.7 t o  about 5 .  
%3c 

Figure 7.- Continued. 
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Figure 8.- Correlation of induced pressures on flat plate in air and 
comparison of theory with experiment. Solid symbols indicate data 
obtained two diameters or less from leading edge. 
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Figure 13.- Sketch of f la t -p la te  model used i n  t e s t s  i n  Langley l l - inch 
hypersonic tunnel. A l l  l i nea r  dimensions a re  i n  inches. 
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Figure 14 .- Temperature dis tr ibut ion on f l a t  plate  with the 
0.060-inch-thick f lat-face leading edge. 
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