Optical Observations of Space Debris

Patrick Seitzer
Dept of Astronomy
University of Michigan
pseitzer@umich.edu

Kira Abercromby (ESCG/JS),
Heather Rodriguez (ESCG/JS), Ed Barker (NASA/JSC)
& Thomas Kelecy (Boeing)

Supported by
NASA’s Orbital Debris Program Office
Johnson Space Center, Houston, Texas
All Cataloged Objects at GEO
National Aeronautics and Space Administration

Cerro Tololo Inter-American Observatory

[Image of Cerro Tololo Inter-American Observatory]
0.61/0.91-m Schmidt telescope
GEO debris survey began February 2001
Examples of Detections
Use of STK for Observation Planning
GEO Debris Observations with Two Telescopes

• Limitations of single telescope – incomplete survey or short arc for orbit.

• March 2007 – began observations with two telescopes at Cerro Tololo, Chile:
 – MODEST survey telescope: 0.6/0.9-m Schmidt
 – CTIO 0.9-m telescope for follow-up

• Goal – characterization of complete sample of faint GEO debris selected on basis of angular rates and brightness.
 – Orbits
 • What fraction of objects selected on basis of magnitude and angular rates are really at GEO?
 – Brightness variations
 – Colors in standard astronomical filters.
CTIO 0.9-m

- 0.9-m Cassegrain
- 0.22 deg FOV (small!)
- Track objects at their angular rates.
- Existing telescope and CCD.
- Debris project can obtain several weeks during the year of time on this telescope for GEO observations.
Techniques and Results

• Typical time between last MODEST observation and 1st 0.9-m observation less than 20 minutes. MODEST observations fit to circular orbit and prediction generated for 0.9-m.

• Recovery rate of MODEST detections on 0.9-m greater than 80%.

• After initial acquisition and follow-ups on 0.9-m: determine full six parameter orbit including eccentricity.

• Track objects from night to night
 – Longest track is six nights on multiple objects in March 2007, March & August 2008.
 – Primary reason for loss of track is object moves too far east or west to be tracked from Chile.
Statistical Analysis

• Use all available information from all sources to determine distribution of all objects found in MODEST survey strips.

• Bright objects found by MODEST not followed up by 0.9-m due to time constraints:
 – Magnitudes from MODEST survey observations.
 – Orbits from public Space Command catalog.

• Faint objects found by MODEST and followed up by 0.9-m:
 – Magnitudes from MODEST survey observations to ensure on same system as bright objects (CTs) from catalog.
 – Orbits from full six parameter fit from both MODEST and 0.9-m observations.

• A few bright objects with known orbits tracked by 0.9-m and orbits compared with catalog. Excellent agreement.

• Following slides show March 2007 data – analysis complete.
Inclination Distribution

- Number per Bin
- Inclination (degs)

Legend:
- Night to Night Objects
- Survey CTs
Magnitude versus Eccentricity

- **Survey CTs**
- **Night to Night Objects**
Future

• Most pressing goal - follow-up observations after several weeks with MODEST – determine A/M using ODTK.

• Goal – characterization of complete sample of faint GEO debris selected in a well defined, consistent manner.