Optical Observations of Space Debris

Patrick Seitzer
Dept of Astronomy
University of Michigan
pseitzer@umich.edu

Kira Abercromby (ESCG/JS), Heather Rodriguez (ESCG/JS), Ed Barker (NASA/JSC) & Thomas Kelecy (Boeing)

Supported by
NASA’s Orbital Debris Program Office
Johnson Space Center, Houston, Texas
GEO Stationkeeping Satellites
MODEST – Michigan Orbital Debris Survey Telescope
the telescope formerly known as the Curtis-Schmidt

0.61/0.91-m Schmidt telescope
GEO debris survey began February 2001
Examples of Detections
Use of STK for Observation Planning
GEO Debris Observations with Two Telescopes

- Limitations of single telescope – incomplete survey or short arc for orbit.

- March 2007 – began observations with two telescopes at Cerro Tololo, Chile:
 - MODEST survey telescope: 0.6/0.9-m Schmidt
 - CTIO 0.9-m telescope for follow-up

- Goal – characterization of complete sample of faint GEO debris selected on basis of angular rates and brightness.
 - Orbits
 - What fraction of objects selected on basis of magnitude and angular rates are really at GEO?
 - Brightness variations
 - Colors in standard astronomical filters.
• 0.9-m Cassegrain
• 0.22 deg FOV (small!)
• Track objects at their angular rates.
• Existing telescope and CCD.
• Debris project can obtain several weeks during the year of time on this telescope for GEO observations.
Techniques and Results

- Typical time between last MODEST observation and 1st 0.9-m observation less than 20 minutes. MODEST observations fit to circular orbit and prediction generated for 0.9-m.

- Recovery rate of MODEST detections on 0.9-m greater than 80%.

- After initial acquisition and follow-ups on 0.9-m: determine full six parameter orbit including eccentricity.

- Track objects from night to night
 - Longest track is six nights on multiple objects in March 2007, March & August 2008.
 - Primary reason for loss of track is object moves too far east or west to be tracked from Chile.
• Use all available information from all sources to determine distribution of all objects found in MODEST survey strips.

• Bright objects found by MODEST not followed up by 0.9-m due to time constraints:
 – Magnitudes from MODEST survey observations.
 – Orbits from public Space Command catalog.

• Faint objects found by MODEST and followed up by 0.9-m:
 – Magnitudes from MODEST survey observations to ensure on same system as bright objects (CTs) from catalog.
 – Orbits from full six parameter fit from both MODEST and 0.9-m observations.

• A few bright objects with known orbits tracked by 0.9-m and orbits compared with catalog. Excellent agreement.

• Following slides show March 2007 data – analysis complete.
Magnitude versus Eccentricity

- **Survey CTs**
- **Night to Night Objects**

![Graph showing the relationship between magnitude and eccentricity with data points representing different categories.](image)
Mean Motion vs Eccentricity

![Graph showing the relationship between Mean Motion and Eccentricity. The graph includes two sets of data points: one for survey CTs and another for Night to Night Objects.](Image)
Future

- Most pressing goal - follow-up observations after several weeks with MODEST – determine A/M using ODTK.

- Goal – characterization of complete sample of faint GEO debris selected in a well defined, consistent manner.