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Abstract 

Through analyses of the model simulated data-base, we developed a technique to 
estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations 
and 40" incidence) configuration. This technique includes two steps. First, it decomposes 
the total backscattering signals into two components - the surface scattering components 
(the bare surface backscattering signals attenuated by the overlaying vegetation layer) 
and the sum of the direct volume scattering components and surface-volume interaction 
components at different polarizations. From the model simulated data-base, our 
decomposition technique works quit well in estimation of the surface scattering 
components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, 
respectively. Then, we use the decomposed surface backscattering signals to estimate the 
soil moisture and the combined surface roughness and vegetation attenuation correction 
factors with all three polarizations. 
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Abstract - Through analyses of the model simulated data- 
base, we developed a technique to estimate surface soil 
moisture under HYDROS radar sensor (L-band multi- 
polarizations and 40" incidence) configuration. This technique 
includes two steps. First, it decomposes the total backscattering 
signals into two components - the surface scattering 
components (the bare surface backscattering signals 
attenuated by the overlaying vegetation layer) and the sum of 
the direct volume scattering components and surface-volume 
interaction components at different polarizations. Prom the 
model simulated data-base, our decomposition technique 
works quit well in estimation of the surface scattering 
components with RMSEs of 0.12, 0.25, and 0.55 dB for VV, 
HH, and VH polarizations, respectively. Then, we use the 
decomposed surface backscattering signals to estimate the soil 
moisture and the combined surface roughness and vegetation 
attenuation correction factors with all three polarizations. 

Keywords - soil moisture, L-band multi-polarization 
radar. 

During past years, investigations have demonstrated 
the capability of active microwave instruments in soil 
moisture mapping. However, the most of investigations are 
focused on the bare surface cases. Natural variability and 
the complexity of the vegetation canopy and surface 
roughness significantly affect the sensitivity of radar 
backscattering to soil moisture. Backscattering signals from 
vegetated areas is a function of water content and its spatial 
distribution as determined by vegetation structure and 
underlying surface conditions. It is clear that vegetation 
cover will cause an under-estimation of soil moisture and an 
over-estimation of surface roughness when we apply the 
algorithm for bare surface to vegetation covered regions. 
Due to complexity of natural surface and vegetation 
structure (unknowns are more than measurements), it is 
quite difficult to develop a quantitative algorithm to 
estimate soil moisture in vegetated areas. This study 
investigates the techniques to estimate surface soil moisture 
of bare and short vegetated surfaces under HYDROS radar 
sensor configuration: L-band (1.26 GHz), multi-polarization 
(VV, HH, and VH), and 40" incidence radar measurements. 

We first established a model simulated data-base using 
a radiative transfer model. For the surface scattering 
components, it uses the E M  model [I] with the random 
rough surface assumption to simulate the wide range of soil 
moisture and roughness conditions for co-polarized signals 
and the Oh's semi-empirical model [2] to the depolarization 
factor V W V  of the surface backscattering, then the cross- 
polarized signals can be obtained using E M  simulated VV 
polarization signals. For the vegetation scattering and 
surface-volume scattering components, we simulated with 
randomly orientated disk [3] and short cylinders [4] with the 
maximum of optical thickness and single scattering albedo 
up to 0.5 and 0.2, respectively. Table 1 summarizes the 
parameters of vegetation and ground that used to generate 
the simulated data-base. 

Table. 1 Vegetation and ground parameters used to generate the data-base 
for algorithm development. 

11. TECHNIQUES TO DECOMPOSE SCATTERING COMPONENT 

Commonly, the radar backscattering coefficient from 
vegetated surfaces can be described as a three components 
model 

where F, is the vegetation fraction cover. The subscripts p 
and q indicate the polarization. The superscripts t, v, sv, and 



s indicate the total, volume scattering, surface-volume 
scattering interaction, and ground surface scattering terms, 
respectively. Lpq = exp(-2 . ~/cos(€)i 1) are the double pass the 

attenuation factor, respectively. z = Q . d  is the optical 

thickness. Q and d are the extinction coefficient and 
vegetation depth. 

Fig 1 shows the histogram of the contributions of the 
sum of volume and surface-volume interaction terms in total 

scattering signals - ( ~ : ~ + o % ) / o b ~  in the simulated data- 

base. From top to bottom, they are VV, HH, and VH 
polarizations, respectively. We can see that the effects of 
vegetation differ at the different polarization for the same 
vegetation parameter. From VV, HH to VH polarizations, 
the vegetation contribution to the total signal increases. In 
comparison VV and HH polarizations, it is mainly resulted 
from the surface-volume interaction term that has the 
characteristics of HH > VV. For VH, it is due to surface 
scattering does not generate significant cross-polarization 
signal. VH polarization measurements mainly reflect the 
vegetation information. 

Fig. 1 Histogram of the contributions of the contributions of the sum of 
volume and surface-volume interaction terms in total scattering signals in 
the simulated data-base. From top to bottom, they are VV, HH, and VH 
polarizations, respectively. 

In terms of the estimating surface soil moisture, the 
surface scattering component has the maximum sensitivity 

to soil moisture and is actually information needed. The 
signals from the direct volume scattering components and 
surface-volume interaction components have vegetation 
information but they are the noise signals for soil moisture 
estimation. 

Fig 2 shows the relationships between the 

depolarization factor - ohq / o h p  (as x-axis) and the sum of 

the direct volume and surface-volume interaction 

contributions - ( ~ ~ ~ + o & ) / o b ~  in VV polarization (top) 

and HH polarization (bottom). We can see that the 
depolarization factor is proportional to the sum of the 
volume scattering and surface-volume scattering 
contributions and inversely relates the surface scattering 
contribution. The correlation is better described in VV 
polarization than that in HH polarization due to the 
differences in the surface-volume interaction terms in these 
two polarizations. 

Fig. 2 the relationships between the depolarization factor (as x-axis) and 
the sum of the direct volume and surface-volume interaction contribution in 
VV polarization (top) and HH polarization (bottom). 

From Fig 2, we can see that the depolarization factor 
VHNV < 0.02 (-17 dB) and VWHH < 0.035 (-14.5 dB) 
represents the bare surface cases. They may be used to 
identify the bare surface. In addition, the contributions of 
the scattering components can be roughly estimated, 
especially for VV polarization. In order to improve the 
decomposition accuracy, we carried out the regression 
analyses using the simulated data-base. We found that the 
surface scattering contribution can be better estimated by 



for the co-polarizations. $p is the surface scattering 

contribution in the total backscattering signals for 
polarization pp. The coefficients a, b, c, d, e, f, and g differ 
for VV and HH. For VH polarization, it is written as 

Then, the surface backscattering components at each 
polarization can be obtained by 

Fig. 3 the comparison of the input surface scattering signals (x-axis) with 
that the estimated surface scattering signals (y-axis) from the simulated 
total backscattering coefficients using above technique. From top to bottom 
of the plots, they represent that in VV, HH, and VH polarizations. 

Fig 3 compares the input surface scattering signals (x-axis) 
with that the estimated surface scattering signals (y-axis) 
from the simulated total backscattering coefficients using 
above technique. From top to bottom of the plots, they 
represent that in VV, HH, and VH polarizations. The 
corresponding RMSE are 0.12, 0.25, and 0.55 dB for VV, 
HH, and VH, respectively. They indicate the surface 

scattering signals can be well estimated for the co- 
polarizations (VV and HH). However, the less accuracy is 
expected for VH polarization since its sensitivity to the 
surface scattering is small in this polarization. 

In. ESTIMATION SOIL MOISTURE OF VEGETATED SURFACES 

In our evaluation of the bare surface backscattering 
coefficients simulated by IEM, we find it can be written as 

Sr,, is the roughness parameter that depending on the 
polarization, incidence angle, surface RMS height, 
correlation length. It represents an overall effect of the 
surface roughness. B,, is a parameter that mainly depends 
incidence angle for the incidence < 45". At 40" incidence, 
B,=0.97, Bhh=l.l, and B,h=0.8. At higher incidence, the 
surface roughness start to have a significant effect on the B,, 
parameter, especially for HH polarization. R, represents the 
surface reflectivity and can be written as 

lavyf2 for vv 
lahh? for I-IH (6) 

1 ahhF @ for VH 

where 1 app is the polarization magnitude from the Small 

Perturbation Model. TO is the reflectivity for the flat surface 
B 

at normal incidence. Therefore, ~~p is only dependent on 

the surface dielectric properties and incidence angle for 
incidence c 45". 

For vegetated surfaces, the surface scattering 
component can be described as: 

where Cpq=Srpq.(l-b +b.Lpc$  is a combined surface 

roughness and vegetation correction factor. For soil 
moisture estimation, the task is how well we can estimate 

n ; ~  or how well we can minimize the effect of C$q. 

Using the simulated surface backscattering term in Eq 
(7),  we first carried out the regression analysis for 

estimation of CIfih. It was found that this parameter could 
be fairly well estimated with the second-order form: 



2 s' 2 s' + e . log (avv) + f . log (ahh) + g.  log2(os1 )] (8) vh 

Then, soil moisture can be obtained from the estimation of 

Fig 4 (left) shows Histogram of the relative error in % 

for the estimated C U ( t o p  row) and the absolute error in % 
for estimated volumetric soil moisture (bottom). The 
inversion is by using the simulated surface component - Eq 
(7) as the input data. The RMSE are 4.95 % for estimating 

the relative error of CIfih. It results in 2.68 % in terms of 
the RMSE in estimating volumetric soil moisture. However, 
when we use the estimated surface scattering signals by Eqs 
(2-4) from the total signals, the great error is introduced as 
shown on the right side of Fig 4. The RMSEs are 14.9 % 

and 5.7 % for estimation of CQh and soil moisture, 
respectively. This is because the second-order inversion 
form is very sensitive the noise. Due the error introduced in 
the decomposition processes (estimation of the surface 
scattering signals), it has a significant effect on the soil 
moisture estimation. 

Fig. 4 Histogram of the relative error in % for the estimated C m ( t o p  
row) and the absolute error in % for estimated volumetric soil moisture 
(bottom). The left side is inversion using the simulated surface component 
- Eq (7). The right side is inversion using the decomposed surface 
component. 

To further improve the accuracy on estimation of soil 
moisture, we first use Eq (8) to cany out the initial 

estimation of CQh Then we separated the estimated CEhh 

to three regions with C&h<= -20dB, -20dB < C%hc= -10 

dB, and CIfih > -10dB. The parameters a, b, c, d, e, and f 

are re-determined based on the C$h region. For the 

smallest C W  region, we only used VV and HH 
polarizations in Eq (8) due to VH signals are very small. For 
the rest of two regions, the last term in Eq (8) was also 
excluded since it contains the largest error in the estimated 
surface scattering components. Fig 5 shows the histogram 

of the relative error in % for the estimated C&h(left) and 
the absolute error in % for estimated volumetric soil 
moisture (right) by this improved technique. The RMSEs 

are 9.5 % and 4.6 % for estimation of CIfih and soil 
moisture, respectively. It can be see that the accuracies in 
estimations of the correction factor and soil moisture can be 
significantly improved. 

Fig. 5 Histogram of the relative error in % for the estimated CQh(1eft) 
and the absolute error in % for estimated volumetric soil moisture (right). 
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