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Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) 
model, we extend the latter so that it can successfully match the numerical relativity waveforms of 
non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by 
successfully, we mean with phase differences 5 8% of a gravitational-wave cycle accumulated until 
the end of the ringdown phase. We obtain this result by simply adding a 4 post-Newtonian order 
correction in the EOB radial potential and determining the (constant) coefficient by imposing high- 
matching performances with numerical waveforms of mass ratios rnllmz = 1,2/3,1/2 and = 114, 
ml and rnz being the individual black-hole masses. The final black-hole mass and spin predicted 
by the numerical simulations are used to determine the ringdown frequency and decay time of three 
quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at 
the light-ring. The accurate EOB waveforms may be employed for coherent searchs of gravitational 
waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer 
detectors. 

PACS numbers: 

I. INTRODUCTION 

The network of ground-based laser-interferometer 
gravitational-wave (GW) detectors, such as LIGO [I],  
VIRGO [4], GEO [2] and TAMA [3], are currently op- 
erating at  design sensitivity (except for VIRGO which 
plans to reach design sensitivity within one year) and 
are searching for GWs in the frequency range of 10-lo3 
Hz. Within the next decade those detectors will likely 
be complemented by the laser-interferometer space an- 
tenna (LISA) 151, a joint venture between NASA and 
ESA, which will search for GMTs in the frequency range 
5 x 10-~-10-~  HZ. 

Binary systems composed of black holes (BHs) and/or 
neutron stars (NSs) are among the most promising 
sources. The search for GWs from coalescing binary 
systems and the extraction of parameters are based on 
the matched-filtering technique [6], which requires accu- 
rate knowledge of the waveform of the incoming signal. 
Recent comparisons [8-111 between numerical and post- 
Newtonian (PN) analytic waveforms emitted by non- 
spinning binary BH systems suggest that it should be 
possible to design purely analytic templates with the full 
numerics used to guide the patching together of the in- 
spiral and ringdown waveforms. This is an important 
avenue to template construction as eventually thousands 
of waveform templates may be needed to extract the GW 
signal from the noise, an impossible demand for numeri- 
cal relativity (NR) alone. 

The best-developed analytic method for describing the 

two-body dynamics of comparable-mass BHs and pre- 
dicting the GW signal is undoubtedly the PN method 171, 
which for compact bodies is essentially an expansion in 
the characteristic orbital velocity v/c. Predictions are 
currently available through 3.5PN order [14-171 (v7/c7), 
if the compact objects do not carry spin, and 2.5PN or- 
der [18] (v5/c5) if they carry spin. Resummation of the 
PN expansion aimed at  pushing analytic calculations un- 
til the final stage of evolution, including the transition 
inspiral-merger-ringdown, have been proposed. In 1999, 
the authors of Ref. [21] introduced a non-perturbative re- 
summation of the two-body conservative dynamics, the 
so-called effective-one-body (EOB) approach [21]. The 
original EOB model was computed using the 2PN conser- 
vative dynamics. It  was then extended to 3PN order [23] 
when the 3PN calculation was completed [17] and then 
to spinning BHs [24]. The EOB approach has been the 
only analytic approach able to predict, within 10% of 
accuracy, the spin and mass of the final BH [25], and 
to provide a complete waveform, from inspiral to ring- 
down, for non-spinning [25, 261 and spinning, precessing 
binary systems [27]. To include accurately the radiation- 
reaction contribution, the EOB approach uses the Pad6 
resummation of the GW flux, as proposed in Ref. [28]. 

As we shall see below, because of the reduction of the 
dynamics to a few crucial functions determining the in- 
spiral evolution, and because of the rather simple pro- 
cedure to match the inspiral(-plunge) waveform to the 
ringdown waveform, the EOB model is particularly suit- 
able for fitting to the numerical results [12, 131. In this 
paper we shall employ its flexibility to obtain accurate 



waveforms for non-spinning binary BHs with mass ratios 
ranging between ml/mz = 1 and ml/m2 = 114, with ml  
and mz being the BH masses. The method also allows us 
to predict the waveforms for mass ratios ml/m2 < 114. 
Those waveforms will be tested against numerical results 
when accurate long numerical simulations for mass ra- 
tios mllmz < 114 become available. In this paper the 
comparisons are carried out using simulations from the 
NASA-Goddard group. 

The paper is organized as follows. In See. I1 we briefly 
review the EOB model. In See. I11 we improve the EOB 
model by adding a 4PN order unknown coefficient to the 
two-body conservative dynamics. In See. IV we compare 
this improved EOB model to two accurate, long numer- 
ical simulations having mass ratios 1 : 1 and 1 : 4, de- 
termine the best-fit 4PN order coefficient and discuss the 
matching performances. Section V summarizes our main 
conclusions. In Appendix A we extend the comparison to 
several multipole moments, and in Appendix B to shorter 
numerical simulations having mass ratios 1 : 2 and 2 : 3. 

ilar approach introduced by BrBzin, Itzykson and Zinn- 
Justin [22] to study two electromagnetically interacting 
particles having comparable masses. The basic idea of 
the EOB approach is to map the real conservative two- 
body dynamics up to the highest PN order available, 
onto an efective one-body problem, where a test par- 
ticle of mass p = mlmz/M, with ml ,  m2 the black-hole 
masses and M = ml +ma, moves in some effective back- 
ground metric g$. This mapping has been worked out 
within the Hamilton-Jacobi formalism, by imposing that 
whereas the action variables of the real and effective de- 
scription coincide, i.e. Lreal = Leff, Zreal = Z e ~ ,  where 
L denotes the total angular momentum, and Z the ra- 
dial action variable, the energy axis is allowed to change, 
Ereai = f (Eeff), where f is a generic function determined 
by the mapping. By applying the above rules defining 
the mapping, it was found 1211 that as long as radiation- 
reaction effects are not taken into account, the effective 
metric is just a deformation of the Schwarzschild metric, 
with deformation parameter 71 = p/M. 

11. THE EFFECTIVE-ONE-BODY MODEL 

The resummation technique discussed in this section, The explicit expression of the non-spinning EOB effec- 
the EOB approach [21], was originally inspired by a sim- tive Hamiltonian through 3PN order is [21: 231: 

A(r) 1 He. (r ,  p) = ji Eeff(., p )  = ji [I + p2 + (- - 1) ( n  P)' + ;i (21 (p2)? 22 p2(n  P)? 23(n ' P14)] , (1) 
D(r )  

with r and p being the reduced dimensionless variables; motion is constrained to a plane. Introducing polar co- 
n = r/r where we set r = / r / .  In absence of spins the ordinates (r,cp,p,,pp), the EOB effective metric reads 

The EOB real Hamiltonian is 

I 

arbitrary, but subject to the constraint 

821 + 422 + 323 = 6(4 - 371) 7 .  
r e  = M r e  = M (4) 

The coefficients A(r) and D(r )  in Eq. (1) have been calcu- 
Remarkably, as originally observed in Ref. [21], the lated through3PNorder 121,231. In theTaylor-expanded 

mapping between the real and the effective Hamiltoni- form they read: 
ans given by Eq. (3) coincides with the mapping ob- 

3PiY 2 2rj 94 41 tained in the context of quantum electrodynamics in (r) = 1 - - + - + 
Ref. [22], where the authors mapped the one-body rel- r r3  [(' - 32*2) r j  -n ]  $, ( 5 )  

ativistic Balmer formula onto the two-body energy for- 
mula. Moreover, Eq. (3) holds at 2PN and 3PN or- 671 1 
der 1231. The coefficients 21, z2 and 23 in Eq. (1) are D$" ( r )  = 1 - 7 r + 1721 + 2 2  + 271 (371 - 2611 - r 3 . (6) 



FIG. 1: In the left panel we show the position of the ISCO and light-ring as function of the parameter w, for different mass 
ratios. In the right panel we show the energy for circular orbits as a function of the frequency evaluated from the EOB 
Hamiltonian and the radial potential as a function of the radial coordinate for a massless particle in the EOB model. The 
various curves refer to different PN orders. 

In principle we could explore the possibility of determin- of A(r).  Replacing the PN-expanded form of A(r) by a 
ing some of the z, coefficients through a fit with the nu- Pad6 approximant cures this problem 1231. The Pad6 
merical results. However, here we do not follow this pos- approximant is 
sibility and, as in previous works, set zl = 22 = 0, thus 
z3 = 2(4 - 377)~  The EOB effective potential ACpN(r) 
does not lead to  a last-stable circular orbit (LSO), con- A2PI'? ' (-4 + '' + ?I) 

('1 = 27-2 + 29 + 7 (7 )  
trary to  what happens in the 2PN-accurate case [21]. 
This is due to  the rather large value of the 3PN coeffi- 
cient 9413-41/327i2 21 18.688 entering the P?; expansion at 2PN order and 

a t  3PN order where and r= t /M,  G = w M [25], as [54] 

dp, - 
- 

ai? 
dt --(r, PT, PP) a r  

To include radiation-reaction effects we write the EOB 
Hamilton equations in terms of the reduced quantities H where for the p component of the radiation-reaction force 
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FIG. 2: Equal-mass binary. In the left panel we plot the NR and EOB frequencies and amplitudes, and the phase difference 
between the EOB and KR h2z.  In the right panel we compare the EOB and NR h22 extracted perpendicularly to the orbital 
plane. We maximize only on the initial phase and time of arrival. 

we shall the P-approximant [25, 281 

(14) 
where v, E E (dp/di)1/3. The coefficients f p N  

can be read from Eqs. (XXX) in Ref. 1421, while we set 
upole = 1. In Refs. 1441, the authors pointed out that a 
more accurate expression of the radiation-reaction force 
should not use the Keplerian relation between r and w 
when the binary evolves inside the LSO. We find that 
this modification has a negligible effect on the waveform. 

The last crucial ingredient of the EOB model is the in- 
clusion of the ringdown phase. After the two BHs merge, 
the system settles down to a Kerr BH and emits quasi- 
normal modes (QNMs) [49, 501. In the test-mass limit, 
r] << 1, Refs. [50, 511 realized that when a test parti- 
cle falls radially below 3M (the unstable light-ring of 
Schwarzschild). it immediately triggers the production 
of QNMs. In the equal-mass case Q = 114, Ref. [52] 
proposed the so-called close-limit approximation, which 
consists in switching from the two-body description to 
the one-body description (perturbed-BH) close to the 
light-ring location. Based on these observations, Ref. 1211 
modeled the merger as a very short (instantaneous) phase 
and matched the inspiral(-plunge) waveform a t  the light- 
ring to a damped sinusoid. The frequency and decay 
time were computed estimating the final BH mass and 
spin from the EOB energy and angular momentum at 
the matching point. The matching procedure has then 
been improved, by adding more QNMs, extending it to 
several multipole moments [8, 531, and applying it in an 
time-interval instead of one point in time [46]. 

111. IMPROVING THE EFFECTIVE-ONE-BODY 
MODEL 

Previous investigations [8, 101 focusing on compa- 
rable mass binaries, have shown that a non-negligible 
dephasing can accumulate at the transition inspiral(- 
plunge) to ringdown between the EOB waveform, com- 
puted through 3.5 PN order, and the NR waveform. The 
dephasing is caused by the much fast increase of the GW 
frequency in the 3.5PN-EOB model than in the NR simu- 
lation. Although the dephasing will prevent to accurately 
determine the binary parameters, it will not prevent to 
detect the waveform. In Ref. [lo] the EOB matching 
to ringdown employed three extra parameters describing 
the time of matching, and the difference between the final 
BH mass (spin) and the energy (angular-momentum) at 
the point of matching. In this paper we shall improve the 
matching getting rid of the three extra parameters and 
reducing the dephasing to 50 .08  of a GW cycles, thus 
providing accurate waveforms depending only on the BH 
masses to be used for coherent detection and parameter 
estimation. 

To decrease the differences between the EOB and NR 
waveforms during the last stages of inspiral and plunge, 
we introduce a 4PN order term in the effective potential 
A(r) and Pad6 approximate it using the approximant 
Ap2. Similar modifications were employed in Ref. [33] 
to obtain better matches of the EOB model to quasi- 
equilibrium initial-data configurations [34]. Since the 
4PN term has not been calculated in PN theory, we shall 
denote it as "p4PNn, where "p" stands for pseudo. We 
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FIG. 3: Binary with mass ratio 1 : 4. In the left panel we plot the NR and EOB frequencies and amplitudes, and the phase 
difference between the EOB and NR hzz.  In the right panel we compare the EOB and XR hz2  extracted perpendicularly to 
the orbital plane. We maximize only on the initial phase and time of arrival. 

have with 

N U ~ ( A ; ? ~ )  = r3 [32 - 247 - 4a4(7), 0) - as(q, w)] + r4[a4(77, 0) - 16 + 8771 , (16) 

where 

a5(rl,w) = wrl, 

batic orbits [29], and to the quasi-equilibrium initial-data 
approach [30] (see Fig. 16 and Table I1 in Ref. [30]). 

(18) This could be a pure accident. In fact, it should be 

and w will be determined by the comparison with nu- 
merical results. In the left panel of Fig. 1 we show how 
the pseudo 4PN order term w modifies the position of 
the EOB LSO and light-ring (the last unstable orbit for 
a massless particle) for several binary mass ratios. Later 
on we shall see that  the value of w that best fits the NR 
results (see Sec. IV) is w = 60. It  always guarantees the 
presence of a LSO and a light ring. In the right panel 
of Fig 1, we show the circular-orbit energy computed 
with the EOB Hamiltonian, and the radial potential for 

kept in mind that the LSO frequency computed from 
the 3PY-Taylor-expanded conservative dynamics is [29] 
MU& 0.129 ( E L /  = -0.0193), quite close to 
the formation of the common apparent horizon in the 
NR simulation, and quite far from the frequency 0.08 
a t  which the blurred plunge occurs [8]. What we can 
certainly say is that the EOB conservative dynamics at 
p4PX order is closer than a t  3PN order to the 3PN 
Taylor-expanded conservative dynamics of quasi-circular 
adiabatic orbits [29]. 

a massless particle, a t  different PN orders having fixed 
w = 60. We notice that the LSO energy ( E ~ \ / M  = 

-0.0185) and frequency (~4w;g"N = 0.1047) at p4PN or- 
der are closer to the corresponding values obtained using 
the 3PN-Taylor-expanded model for quasi-circular adia- 



where 

FIG. 4: For different mass ratios, we show how the FF (com- 
puted using white noise) depends on the parameter w. The 
vertical line refers to the value w = 60 which we employ in 
all subsequent analyses. 

IV. ACCURATE EFFECTIVE-ONE-BODY 
WAVEFORMS FOR INSPIRAL, MERGER AND 

RINGDOWN 

Jie  now compare the p4PN EOB model of Sec. I11 
with a few numerical simulations produced by the RASA- 
Goddard group. The numerical simulations compute 
directly the JVeyl tensor Q4, which in terms of spin- 
weight -2 spherical harmonics -2&,(0, cp) [48] reads [see 
Ref. [35] for details] 

being R the extraction radius. In terms of the -+ and x 
GW polarizations we have 

Thus, we can write 

M RCl, = M R dR -2Yim(Q, cp) (h+ - i h x ) .  (21) ! 
In the adiabatic approximation (ij/w2 << I), we obtain 

h = ( h  - h m  = dR - 2 G ( % ,  p) (h+ - ih,) . ! 
(23) 

We compute the EOB hl, in the so-called restricted ap- 
proximation, i.e., a t  leading order in the P N  expansion. 
They read: 

where Sm = ml  - m2. 

The equal-mass run lasts for 14 GW cycles be- 
fore merger. This run was published originally in 
Refs. [9, 351, and further studied for data-analysis pur- 
poses in Ref. [lo]. The unequal-mass runs, ml/m2 = 
2/3,1/2,1/4, last for 5, 5, and 9 GJY cycles before 
merger. The ml/m2 = 213,112 cases were published 
in References [lo,  111 and the ml/mz = 114 has recently 
been computed by the NASA-Goddard group. Adap- 
tive mesh refinement was employed for this case as in 
the previous simulations, with a finest mesh resolution of 
hf = 3M/160 used in one run and hf = MI64 used in 
a second. Adequate convergence of the Hamiltonian and 
momentum constraints were found; the numerical details 
will be reported in a future publication. In the follow- 
ing analysis of the ml/ma = 114 case, data from the 
hf = MI64 run are used. 

For different mass ratios, we show in Fig. 4 how the FF, 
obtained using white noise, depends on the parameter w. 
Based on this plot we decide to use in the rest of the 
paper w = 60. In Figs. 2 and 3, we plot the EOB and KR 
waveforms, orbital frequencies, and phase differences for 
the most accurate, long numerical simulations, notably 
the 1 : 1 and 1 : 4 cases. In Appendix B we show similar 
plots for the shorter runs 1 : 2 and 2 : 3. 

The RD modes are attached at the time when the orbital 
frequency reaches its maximum and this occurs slightly 
before the light-ring position, rmat,h =??, MW =?? (7 = 
0.25) and 'match =??, Mw =?? (7) = 0.16). The matching 
is obtained by imposing the continuity of hlm(t) and all 

the higher time derivatives needed to fix the 2N unknown 
amplitudes and phases of the N RD modes [25]. Follow- 
ing Ref. [8], we attach the fundamental mode, and two 
overtones. Tie find that the matching-performance does 
not improve significantly if we add more overtones. The 



TABLE I: For several values of 7 ,  we list in the second and third columns the best-values of M f / M  and a f  / M f  computed from 
the energy released and by extracting the fundamental QNM from -2C22, respectively. In the fourth and fifth columns we list 
the values obtained from the fits M f / M  = 1 - 0 .0610~  - 0.4339r12, and a f / M f  = 3.441 v - 2.687v2, respectively. 

1.1 1 [ M f  / M ] f r o m ~  I [af /Mf]from RD / [ M f  /M]from fit I [af/Mf]from fit I 

frequency and decay time of the RD modes are computed 
using the mass and spin of the final BH, as predicted by 
the numerical simulations. In fact for non-spinning bi- 
nary systems, it is now possible to determine how the 
final-BH mass and spin depend on the mass ratio. 

In Table I we list the final BH masses and spins for 
77 = 0.25,0.24,0.22,0.16, extracted from the NR simu- 
lations. The values are compatible with Ref. [47]. We 
also computed the final BH masses and spins to lower 
values of applying a two-parameter fit to the data 
7 = 0.25,0.24,0.22,0.16. For the BH mass we use the 
fit function M f / M  = 1 + aq + bV2, and get a = -0.0610 
and b = -0.4339. Quite interestingly, the value of a 
is quite close to the LSO energy for a test particle in 
Schwarzschild, i.e., - 1 2: -0.0572. For the BH 
spin we employ the fit function a f  / M f  = cq + dq2, and 
get c = 3.441 and d = -2.687. Again, the value of c 
is quite close to the LSO angular-momentum for a test 
particle in Schwarzschild, i.e., fl 2 3.464. The ex- 

10.251 0.955 0.687 0.958 

trapolation to smaller values of 7 are consistent with the 
values obtained in Ref. [45] using the EOB approach. 

0.692 

To measure the differences between the NR and EOB 
waveforms we compute the fitting factor (FF), or am- 
biguity function [lo, 28, 421. The overlap (hl (t),  hz(t)) 
between the waveforms hl(t) and hz(t) is defined by: 

where ii( f )  is the Fourier transform of hi(t), and Sh(  f )  
is the detector's power spectral density (PSD). The F F  is 
the normalized overlap between the NR waveform hNR(t) 
(target) and the EOB waveform hEoB(to, pO) (template) 
maximized only over the initial time to and initial phase 
yo, and minimized over the initial phase y of the target, 
that is 

(hNR(y; X i ) ,  hEOB (to, po; Xi ) )  
FF  E min max 

P ~ O , P O  J(h"R(y; Xi), hNR(p; Xi))(hEoB(tO, (PO; Xi ) ,  hEoB(tO, ~ 0 ;  X i ) )  

For the detector PSD we shall consider either white noise 
or the LIGO noise. 

In Tables 11, I11 we list the FFs and the phase differ- 
ence (in one GW cycle) between the p4PN-EOB wave- 
form and the YR waveform, for white PSD and LIGO 
PSD, respectively. We consider the 1 = 2, m = 2 mode, 
but also other modes which are no-longer subdominant 
when the mass ratios decrease, as can be seen in right 
panel of Fig. 7. The FFs are rather high except for the 
1 = 4 and m = 4 mode with mass-ratio 1 : 4. In this 
case we find that the matching procedure is not so effi- 
cient in reproducing, especially, the amplitude of the NR 
ringdown waveform. More studies extended to different 
mass ratios may shed light on this apparent anomaly. 

The hl, waveforms shown in Figs. 2, 3, 5 and 6, are 

normalized waveforms. In the right panel of Fig. 7, 
we compare the NR amplitude and EOB restricted- 
approximation amplitude for several 1 and m modes. 
By restricted-approximation amplitude we mean that for 
each 1 and m we restrict ourselves to the leading order 
term in a PN expansion. We notice, as already pointed 
out in Ref. [lo],  a non-negligible difference between the 
NR and EOB amplitude. l i e  do not know what is the 
source of this difference. Higher-order PN corrections in 
the amplitude could in part nullify the difference, but 
due to the oscillatory behaviour of the higher PN correc- 
tions [8], it is hard to draw a robust conclusion. More- 
over, there could be a systematic error in the numerical 
amplitude due to extraction radius or resolution issues. 
Although, the difference in the amplitudes has negligible 



TABLE 11: For several mass configurations, we list the FF 
obtained using white noise and maximizing only on the time 
of arrival and initial phase, and the phase difference in one 
GW cycles. 

TABLE 111: For several mass configurations, we list the FFs 
obtained using LIGO PSD and maximizing only on the time 
of arrival and initial phase, and the phase difference in one 
GW cycles. 

effects on the fitting-factors [lo],  it needs to be sorted 
out. 

V. CONCLUSIONS 

In this paper we started exploiting the flexibility of 
the EOB approach to build accurate wa~reforms for non- 
spinning binary BHs. TVe obtained phase differences be- 
tween the EOB and NR waveforms of less than 8% in 
a GTV cycle, for mass ratios 7 = 0.25,0.24,0.22 and 
7 = 0.16. The p4PN EOB model can be used to predict 
waveforms for values of eta < 0.16, that can be tested 
against numerical simulations when accurate, long wave- 
forms will become available. 

The improved EOB model is obtained by simply 
adding a p4PN order constant coefficient (w = 60) in 
the EOB radial potential A(r) and Padeing the latter 
to guarantee the presence of the LSO and the light-ring. 
This modification provides a better agreement between 
the EOB and NR GW frequency during the transition 
inspiral(-plunge) to ringdown. The complete waveform 
is then built by attaching three QNMs at the peak of 
the EOB GW frequency. The QNM frequency and de- 
cay time are fixed by the final BH mass and spin, which 
can be predicted by extrapolating sparse NR results, ei- 
ther through a fit (see TabIe I) or within the EOB model 

itself [45]. 
We point out, as already done in Ref. [lo], that there 

exists a non-negligible difference in the amplitude of the 
PN (EOB or Taylor-expanded-PN) and NR waveforms, 
whose origin has not yet been accounted for. It  might be 
due to higher-order PN corrections in the amplitude or 
numerical systematic errors. 

Using white PSD, we found FFs 0.98, except for the 
I = 4 and m = 4 mode of mass ratio 1 : 4 which has F F  
= 0.94 (see Table 11). At present time, we do not know 
what is the reason of this anamaly. I t  could be due to a 
failure of the matching procedure due to the presence of 
other QNAlls. All FFs are achieved by maximizing only  on 
the initial phase and time of arrival of the template (and 
by minimizing on the initial phase of the target). Since 
we do n o t  maximize on the binary's intrinsic parameters, 
that is the BH masses, the p4PN-EOB model can be 
used for parameter estimation. Depending on the binary 
total mass and mass ratios, FFs 20.98 are obtained with 
LIGO PSD (see Table 111), except for the 1 = 4, m = 4 
mode, which has FF  = 0.95-0.97, depending on the total 
binary mass. 

When maximizing on the binary masses, the p4PN- 
EOB waveform will have extremely high matching per- 
formances (FF 20.99) and can be used for coherent de- 
tection of non-spinning binary BHs. In the future we 
plan to extend this analysis to spinning, precessing bi- 
nary systems, using improved versions of the EOB model 
with spin 124, 271. Once a complete analytic model for 
inspiral-merger-ringdown is worked out, we shall employ 
the detection schemes proposed in Refs. [41, 431 to deal 
with intrinsic and extrinsic parameters in the presence 
of spins, and provide accurate templates to be used by 
ground-based and space-based detectors. 
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APPENDIX A: COMPARISON OF MULTIPOLES 
W I T H I #  2 A N D m # 2  

Here we discuss how the p4PN-EOB waveforms having 
1 # 2 and m # 2 compare with the NR ones. We consider 
the dominant modes, that is 1 = 3, m = 3, 1 = 4, m = 4, 
1 = 3, m = 2 and 1 = 2,  m = 1, and restrict the analysis 
to the case with mass ratio 1 : 4. 



FIG. 5 :  Binary with mass ratio 1 : 4. In the left (right) panel we plot the hg3 (h44) mode. We maximize only on the initial 
phase and time of arrival. 

- EOB frequency 
0.35 - - - NR amplitude 

FIG. 6: Binary with mass ratio 1 : 4. In the left (right) panel we plot the h32 (h21) mode. We maximize only on the initial 
phase and time of arrival. 

APPENDIX B: COMPARISON WITH BINARIES waveforms are much shorter, and the eccentricity during 
OF MASS RATIO 1 : 2 AND 2 : 3 the inspiral case is more pronounced. 

In this appendix we show how the p4PN-EOB model 
performs for mass ratios 1 : 2 and 2 : 3. In these cases the  
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FIG. 7: Binary with mass ratio 1 : 4. In the left panel we plot the dominant frequencies for several 1 and m modes. Generalizing 
Eq. (XXX) in Ref. [8], we define wol,  = - ( l /m)  Im(C~,/C~,) [ l l ] .  In the right panel we compare the NR amplitude and 
EOB restricted-approximation amplitude for several 1 and m modes. By restricted-approximation amplitude we mean that for 
each 1 and m we restrict ourselves to the leading order term. 
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and NR hz2 for a binary with mass ratio 1 : 2 (2 : 3). We maximize only on the initial phase and time of arrival. 
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