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Abstract 

Distributed control in a networked environment is an irreplaceable feature in 

systems with remote sensors and actuators. Although distributed control was not 

originally designed to be networked, usage of off-the-shelf networking technologies has 

become so prevalent that control systems are desired to have access mechanisms similar 

to computer networks. However, proprietary transducer interfaces for network 

communications and distributed control overwhelmingly dominate this industry. Unless 

the lack of compatibility and interoperability among transducers is resolved, the mature 

level of access (that computer networking can deliver) will not be achieved in such 

networked distributed control systems. Standardization of networked transducer 

interfaces will enable devices from different manufacturers to talk to each other and 

ensure their plug-and-play capability. One such standard is the suite of IEEE 1451 for 

sensor network communication and transducer interfaces. The suite not only provides a 

standard interface for smart transducers, but also outlines the connection of an NCAP 

(network capable application processor) and transducers (through a transducer interface 

module – TIM).  This paper presents the design of the compliance testing of IEEE 1451.1 

(referred to as Dot1) compatible NCAP-to-NCAP communications on a link-layer-
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independent medium. The paper also represents the first demonstration of NCAP-to-

NCAP communications with Dot1 compatibility: a tester NCAP and an NCAP under test 

(NUT). 

A. Introduction 

The Instrumentation and Measurement Society’s Sensor Technology Technical 

Committee TC-9 in the Institute of Electrical and Electronics Engineers (IEEE) and the 

National Institute of Standards and Technology (NIST) have been working to establish a 

suite of smart sensor interface standards under IEEE 1451 since late 1990s. The objective 

of the family of standards is to define a set of common communication interfaces for 

connecting transducers (sensors or actuators) to microprocessor-based systems, 

instruments, and field networks in a protocol-independent environment [1]. Transducers 

are used in a wide variety of applications in manufacturing, industrial control, 

automotive, aerospace, building, and biomedicine. Although transducer applications are 

very diverse; desirable features such as low-cost, networked, and intelligent are common 

to all systems. Many control network implementations are currently available, each with 

their own strengths and weaknesses for specific applications [2]. Typically, one 

manufacturer’s system would deliver a black box solution of networking and access 

mechanisms as shown in Fig. 1 without any guarantee of interoperability with similar 
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Figure 1. Current proprietary approach is based 
on complete solutions all the way up to the user 
access with no room for interoperability between 
components from different manufacturers. 
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components made by other manufacturers.  

On one hand, interfacing the smart transducers to control networks using a wide 

variety of standards requires significant effort and upfront expense to manufacturers. On 

the other hand, usage of digital communication schemes and networked transducers can 

eliminate a large number of lengthy wiring [3], enhance access mechanisms to 

measurements, ease configuration capabilities, and thus reduce the cost of installation, 

maintenance, and upgrade of sensor-based systems [4, 5]. As a result, the emergence of 

interoperability standards will deliver networking interfaces. And consequently, 

competition among vendors will be focused on the innovation in component design and 

manufacturing without defining new network interfaces.  

IEEE 1451 standard suite’s goal is to make it easier for transducer makers to 

develop smart devices that can interface to networks, systems, and instruments using 

existing and emerging sensor and networking technologies [6, 7]. A network-neutral 

functional data model for a network-capable application processor (NCAP) has been 

standardized in IEEE 1451.1 (will be referred to as Dot1 from here on) [8]. (At the time 

when this work has been finished, Dot1 has been put into draft status by the 

standardization committee to make revisions based on the overarching IEEE 1451.0’s 

release. Revisions on Dot1 will change some operations. However, the authors believe 

that the work presented here as testing for compliance will remain still applicable.) Dot1 

enables an NCAP to be accessed using an application layer protocol to configure 

transducers, access/retrieve measurement data, and interface with other network devices 

(e.g. other NCAPs) on a control network. This paper presents the compliance testing 

implementation of Dot1-compatible NCAP-to-NCAP communications on a link-layer 
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independent medium [9, 10, 11]. Testing of STIM modules using a virtual NCAP 

implementation has been demonstrated in [12]. Complete hardware implementation of 

STIM and NCAP on a CAN network has been demonstrated [13] with limited control 

functionality on the Dot1 NCAP. Web services have been implemented as an application 

on an NCAP framework over .NET with transducer access and without NCAP-to-NCAP 

communication components [14, 15]. Although there has been also simpler 

implementations of the NCAP [16], this work represents the first prototype of NCAP-to-

NCAP communications with Dot1 compatibility: a tester NCAP and an NCAP under test 

(NUT). The paper is organized as follows: A brief overview of Dot1 with an introduction 

to NCAP-to-NCAP communications will be given in Section B. Then, a general overview 

of compliance testing will be presented. The details of the functional and conformance 

testing procedure design of Dot1 components will be given in Section D. Results from 

the implementation of the NCAP testers are presented in section E. 

B. IEEE 1451.1 (Dot1) Network Capable Application Processor 

IEEE 1451 networked transducer interface standard provides a framework for two 

levels of plug and play [17]: (1) networking interface to transducers equipped with signal 

conditioning and data sampling (namely the transducer interface module – TIM); (2) 

networking interfaces with other network devices, intelligent algorithms, and data 

transfer protocols (namely the network capable application processor – NCAP). 

Following the standards, transducers, TIMs, and NCAPs can be manufactured by 

different vendors while remain interoperable [18]. Fig. 2 illustrates the interoperability 

goal. 
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Figure 2. Transducers and network devices can 
be manufactured by different vendors – as long 
as there is a common interface, they can 
interoperate to deliver data to the users or 
automatic controllers through a network. 

IEEE1451.1 is an application layer protocol that defines a common object model 

to describe how the NCAPs access smart transducer nodes with object interfaces. The 

objectives of such a model are to: (i) streamline the measurement, reconfiguration, and 

networking processes; (ii) enable plug-and-play of transducers; (iii) host intelligent 

algorithms for data fusion/processing before information flows towards the central 

controller (iv) ensure software portability among different hardware and software 

technologies. Complying with Dot1 will result in a distributed measurement and control 

system where NCAPs enable the networking among smart transducers. An NCAP can be 

connected to one or more number of transducers. Dot1 initiates and manages data transfer 

from/to transducers, and configures features of the measurement. In this respect, NCAP-

to-NCAP communication forms an intelligent control framework for data access and 

intelligent decision making. NCAP is regarded as a network device with network 

identification and communication requirements for access and also a gateway to the 

connected transducers. In this respect, the compliance testing of the Dot1 guarantees the 

interoperability of two NCAPs from different manufacturers on the same network.  

C. Overview of Compliance and Functional Testing 
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Implementations of a standard typically vary among manufacturers. This makes 

testing for standard’s compliance a crucial component of the standardization process. 

Compliance with the standards guarantees that the components will operate seamlessly 

even if they are built by different manufacturers. Typically, a special test instrument 

connects to a device under test (DUT) to verify its compatibility. For example, the range 

of resistance for a resistor would be tested using a sensitive ohmmeter (namely, a 

measurement device as a tester) which can be specified in the standard. A networked 

device can be tested using the software platform and the governing protocols. 

Particularly, an interoperability test of a component in a sensor network platform 

requires a network connection, a communication protocol agreement between the tester 

and the component, and a set of operations that provides a specific level of compliance. 

Interoperability in hardware is based on connection types such as serial (USB, RS-232), 

parallel, and Ethernet, etc. In software and networking, interoperability is realized when 

components can speak to each other. The DUT in an interoperability test should work 

with other manufacturer’s devices on the same setup. The compliance to the standard for 

interoperability has two main thrusts: functional compliance such as the operational 

states; and conformance compliance such as the format of communication through the 

network as outlined in a framework among the manufacturers. Although a software-level 

test of function calls is possible, operational states alone are not sufficient to achieve the 

interoperability goals. If the DUT cannot perform operations through its communication 

with other compliant units, a standalone operational unit will not demonstrate 

interoperability. In this respect, the two compliance thrusts are complementary and 



7 
 

should be tested simultaneously. However, not all test failures can be differentiated 

between compliance to a protocol versus an operational error. 

In the case of an interoperability standard such as the IEEE 1451 standards suite, 

the network interface with the rest of the sensor network and the control functions with 

transducers are performed by the network-capable application processor (NCAP). 

According to the standard, two levels of interoperability are designed for an NCAP to 

achieve a plug-and-play system of transducers on a sensor network: NCAP-to-TIM and 

NCAP-to-NCAP. This paper is focused on the NCAP-to-NCAP communications. The 

operational states of an NCAP are tested through functional compliance. The 

conformance is tested with respect to a pre-defined format for the application layer 

packets. More details on the packet format will be given in section D. 

D. Testing Procedures of NCAP-to-NCAP Communications in Dot1 

Dot1 defines neither an application layer packet format nor a byte-level physical 

layer format. They are both defined by the manufacturer and left to the specific 

requirements of the application. For example, the application for this paper involves 

transmission through a TCP/IP (Transmission Control Protocol/Internet Protocol) 

network using XDR (external data representation [19]) as a data format language. The 

operational transmissions related to the transducers, configuration of sensor data retrieval 

methods, and NCAP identifications are handled through the application layer packets. 

Packet formats are defined accordingly with addressing information in a header, followed 

by the operation identifier, and the result of an operation. While addressing, operation 

identifiers, and data types are compliant to Dot1, the position and format of this 
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information in a packet depends on the implementation [20]. Dot1 defines the data types 

of addressing elements such as the “object id”, “object tag”, and “object dispatch 

address.” Operation identifications such as the “GetTEDS”, “SetTEDS”, and “GoActive” 

are also listed in Dot1 as unsigned integer data type with 16-bit length. The ranges of 

operation id’s are listed in [8: Table 7, page 55]. The operational state machine of an 

NCAP Block and the Function Block enable various operations to be functional or non-

functional as shown in Fig. 3. An operation can be functional in that it will return correct 

results for the performed operation. It can be non-functional if it returns a “return code” 

equivalent to “unavailable operation.” This paper presents the reference implementation 

from the revised on-the-wire document [20]. Section D.1 will describe functional testing 

procedures for all operational states of an NCAP. Then, section D.2 will explain the 

conformance testing of an NCAP according to packet formats and the specific 

implementation. 

Figure 3. (a) NCAP block states 
and the corresponding non-
functional operations. When 
NCAP block is active, addressing 
operations such as SetObjectTag 
is not operational to prevent 
conflicts.  
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(b) Function block states and the 
non-functional operations. Data 
transfer is possible through the 
specified update method only 
when the NCAP block is active 
and the function block is running. 

D.1. Functional Testing of Dot1 

Table 1 lists the functional phases and corresponding operations of an NCAP. As a 

network device, NCAP is expected to plug-and-play: that is, when connected to a 

network, it can identify itself to other networked devices through announcements. A 

dynamic announcement configuration guarantees that the NCAP will announce itself 

immediately after connection to a network. On the other hand, static configuration waits 

for a request and then sends back its identification in an announcement packet. These 

processes fall under the node discovery phase. Once an NCAP has been introduced to the 

network, its network visible objects can be accessed by directly addressing the NCAP. 

Therefore, announcement-related messages are multicasted using publication keys and 

UDP (user datagram protocol) whereas network visible objects of a particular NCAP are 

requested through a point-to-point connection, via TCP (transport control protocol). The 

Node Discovery section in Table 1 lists the multicasted publication and subscription 

messages in upper case and point-to-point client/server messages in lower case. 
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Remaining functional phases address the NCAP through client/server messages except a 

multicasted publication of data readings from a sensor during data collection phase. 

Table 1. Functional phases of an NCAP and a sample of corresponding operations. Note: 
PSK stands for publish-subscribe key. 

Node Discovery: PSK_NCAPBLOCK_ANNOUNCEMENT, 
PSK_REQUEST_NCAPBLOCK_ANNOUNCEMENT, 
PSK_FORCE_NCAPBLOCK_ANNOUNCEMENT, 
IgnoreRequestNCAPBlockAnnouncement, RespondToRequestNCAPBlockAnnouncement 
Object Identification: GetNCAPManufacturerID, GetNCAPModelNumber, GetClassID, 
GetBlockManufacturerID, GetBlockModelNumber, GetBlockVersion
Network Configuration: GetNetworkVisibleServerObjectProperties, 
GetClientPortProperties, SetClientPortServerObjectBindings
Transducer Configuration: Get/SetSamplingFreq, Get/SetUpdateFreq, 
Get/SetUpdateMethod, Get/SetOperationMode, GetNumberChannels, Get/SetTEDS 
Data Collection: Update/GetChannelData, PSK_PHYSICAL_PARAMETRIC_DATA, 
Start, Clear 
System Shutdown: GoInactive 

 Functional testing is accomplished by the tester which assumes the role of a 

subscriber when NCAP under test (NUT) should publish or the role of a client when 

NUT should provide server functions such as a data transfer. Each operation is tested for 

its validity, corresponding state of the NCAP device, and configuration updates.  

D.1.I. Publication Announcement Test I & II 

Dynamic versus static announcement configuration is tested first when the NCAP 

is connected to the network. Fig. 4 shows a time diagram of how tester node waits for a 

ΔT amount of time for an automatic announcement. Case A reports no dynamic 

announcement if none is received after timeout. A request is sent by the tester assuming 

that the NUT’s state is Publishing_Enabled. If an announcement response is received 

within the expiration of ΔT, NUT identification is achieved. If not, Case C reports that 

the NUT is not configured to announce. After the NCAP is identified, a client-server 
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message is sent to disable the publishing state of the NUT. Afterwards, it is tested for 

verification – if the NCAP still publishes in response to a request for announcement, 

NUT fails the state transition test. 

PSK_REQUEST_NCAPBLOCK_ANNOUNCEMENT

TN listening and NUT joins the network:
TN checks for messages from NUT for ?T

NUT has no dynamic 
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Figure 4. (a) Publications are 
expected for ΔT time – when 
expired, a request for 
announcement is sent. When 
successful, NUT 
identification is received.  
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(b) NUT states are tested 
using state enabler and 
disabler operations.  
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 Second phase of this publication announcement test forces the state of the NUT to 

change back and forth between enabled and disabled states for publications through 

publisher/subscriber and client-server messages such as the PSK_FORCE_-

NCAPBLOCK_ANNOUNCEMENT and IgnoreRequestNCAPBlockAnnouncement, 

respectively.  

D.1.II. Client-Server Communication 

 Once NCAP on a network has been identified through announcements, its objects 

can be addressed through client/server communications to perform operations such as 

polling of transducers, setting sampling rates, etc. in addition to retrieving all properties 

of the network visible objects of an NCAP. The server responses contain specific return 

codes listed in Dot1 which are verified by the tester. In addition, server responses return 

the specific properties requested by the client – these properties are also verified by the 

tester. Hence, a PASS is issued by the tester only when both return codes and properties 

are received correctly, as shown in Fig. 5. 
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Figure 5. (a) States and 
other identifications are 
retrieved for NCAP and 
the block. 

GetNetworkVisibleServerObjectProperties
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(b) All network visible 
object properties are 
retrieved over the network 
from the NCAP under test. 

D.1.III. Get/Set Functionality and Parameter Configurations 

 This test verifies the active/inactive states and their operational issues. While an 

NCAP is inactive, Get/Set operations on any object should not be operational. Get/Set 

messages are sent to the NUT to verify that it responds with a “service unavailable” 

message. When active, these operations should return the requested data, that is, perform 

the operation. For example, one of the key features of IEEE 1451 is the definition of 

Transducer Electronic Data Sheets (TEDS). The TEDS is stored in a memory device 

attached to the transducer to provide transducer identification, calibration, correction 
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data, measurement range, and manufacturer-related information, etc. During inactive 

state, NUT should not send its TEDS to a GetTEDS request, and it should not update its 

TEDS based on a SetTEDS request. Figure 6 shows an interaction diagram of a section of 

the test process on inactive and active states for SetTEDS and GetTEDS operations.  

CASES 
A & B

CASES
C &D

Client/Server Return Code - FAIL

Client/Server Return Code - PASS

Client/Server Return Code - FAIL

Client/Server Return Code - PASS

TEDS

TEDS

NUT
StateTester 

GetTEDS

SetTEDS

CASES A & C - PASS: if all return codes have passed and 
NUT function block(s) has(ve) (A) returns Service 

Unavailable, (C) returns Service Unavailable.

CASES B & D - FAIL: if any one of the major and minor 
return codes has failed or NUT function block(s) has(ve) 

(B) returns TEDS, (D) sets the new TEDS.

Figure 6. Before NUT is 
changed to active state (while 
in BL_INACTIVE state), 
GetTEDS and SetTEDS 
operations should return 
“Service Unavailable” in 
their return codes. When 
NUT is in BL_ACTIVE state 
the cases for FAIL and PASS 
would be reversed. 

 During active state, all operations based on Get/Set will be functional. The tests 

are designed so that each test first retrieves the parameter’s current value, sets the 

parameter to a valid value, and then retrieves it again to verify that it has been updated. 

Also, some incorrect parameter settings are sent to the NUT to confirm its capability to 

respond with an “invalid parameter value” message to the tester. Similar testing 

procedures were designed for the following operations besides SetTEDS/GetTEDS:  

i. GetSamplingFreq/SetSamplingFreq: sampling frequency of the sensor readings,  
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ii. GetUpdateFreq/SetUpdateFreq: the update frequency at which the NCAP would 

report the readings of a sensor – update frequency cannot be higher than the sampling 

frequency and similarly, sampling frequency cannot be lower than the update frequency, 

iii. GetUpdateMethod/SetUpdateMethod: update method (UM) that the NUT uses to 

report data to other NCAPs – it can be broadcasted (publish), retrieved in polling (pulled 

by the client), or interrupted (pushed through by the server) fashion,  

iv. GetOperationMode/SetOperationMode: operation mode (OM) is used to configure 

the nature of data that is transferred – e.g. raw would correspond to voltage values for a 

thermocouple in the place of the actual temperature readings. 

D.1.IV. Data Exchange Test 

 According to IEEE 1451, NCAPs should be able to exchange sensor readings or 

control actuators among each other. Generic data exchange or update modes can be 

defined such as (i) periodic broadcasts of sensor readings (defined in Dot1); (ii) client 

request, server response, and then client acknowledge (implementation specific); or (iii) 

client request, server response, and no acknowledgment (implementation specific). 

NCAPs are tested for different update modes. Sensors report data to an NCAP at their 

sampling rates. Other NCAPs can retrieve this data at the update frequency. In the case of 

a periodic broadcast, the update frequency determines the period. During a client/server 

data exchange, client request overrides the update frequency; that is, the server responds 

whenever it receives a request even if the update period has expired or not passed yet. 

Data exchange modes are represented by UM (update method) prefix: for example, 
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UM_PUBLISH is multicasted at the update frequency whereas UM_SERVER_PULL is a 

server initiated data request/response mode. Messages to be tested are: 

i. PSK_PHYSICAL_PARAMETRIC_DATA: Publication message of data transfer is 

multicasted with the key for subscribers (PSK stands for publish-subscribe key). 

ii. Start/Clear: “Start” indicates the beginning of the data transfer from an NCAP with a 

transducer to the requesting NCAP. “Clear” stops the transfer. 

iii. UpdateChannelData: Transducer communicates through a “channel” according to 

Dot1. Channel data is requested actively by the client (tester) from the NCAP in a one-

time polling fashion. An acknowledgment is sent by the client once data is received 

successfully. Receipt of ACK by the NCAP (server) triggers more data to be sent. 

iv. GetChannelData: channel data is being requested and acknowledged by the tester. 

Even after the receipt of the ACK, NCAP will expect the client to still send a request 

(GetChannelData) to continue sending data. 

Figure 7. (a) Start 
operation will 
activate the 
publication of 
data in a multicast 
fashion when the 
update method is 
set to “Publish.” 



17 
 

(b) When the 
update method is 
deliberately set to 
publish, the test is 
run again to 
verify that the 
data flow starts 
after the start 
operation. 

D.2. Conformance Testing of Dot1  

Conformance testing refers to the format of application packets and data encoding 

that an NCAP needs to follow to communicate from one function block to its 

corresponding function block in another NCAP. These packets are parsed by an NCAP to 

derive the information being conveyed from the other NCAP. In order to successfully 

communicate over the network, it is essential that they use the same packet format. 

However, Dot1 or any other part of the IEEE 1451 standards suite does not define 

physical layer data exchange format or the data packet fields in order to keep the standard 

flexible enough for interface design among networked devices of specific applications. 

Instead, it only specifies the minimal content of the fields of a packet. For example, an 

“operation id” specifies the arguments of a packet so that the application process can look 

for the data types and values. The operation id of “GetNetworkVisibleServerObject-

Properties” is 4106. As long as the destination NCAP can parse and identify the field of 

the packet with this operation id, the network visible object properties will be fetched, 
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assembled into a packet, marshaled and then sent to the client. The test procedures 

implemented and presented in this paper uses the XDR (external data representation [19]) 

description and data encoding as an example. The data types in XDR are mapped onto the 

data types defined in Dot1 using [20].  

There are primarily three main types of packet exchanges that have been defined 

in Dot1: publish or subscribe, client to server (c2s), and server to client (s2c). A c2s 

packet for an operation always has a return packet from the server in the form of a s2c 

packet. The test procedures are designed to identify (parse) and check the packet fields 

and formats. The packet formats have been defined with the following fields: Byte is the 

number of bytes for a particular field in the packet, e.g. 6-8: the field begins from 6th 

byte in the packet and ends at the 8th byte. Thus, it can be inferred that the length of the 

field is 3 bytes, which includes 6th, 7th and 8th bytes. Interpretation is the field name of 

a parameter in the packet, e.g. OperationID is the field name for the operation of the 

packet. Details section is on the structure and the way in which the bytes are designated 

to each part of the data string. Some of the absolute values will be specified and unknown 

or arbitrary ones will be denoted by N. Tables 2 and 3 display sample packets. 

D.2.I. Publish/Subscribe Packet Format 

 Publish/subscribe operations are performed with multicast communication among 

the NCAPs and use UDP (User Datagram Protocol) as the transport protocol. The flow 

diagram of the process is shown in Fig. 8. As long as the listed attributes are included in 

the multicast message, Dot1 compliance will be achieved.  
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Figure 8. Publish/ 
Subscribe processes 
communicate using the 
attributes listed in the 
standard [Dot1 page 30 
figure 7]. 

PSK_REQUEST_NCAPBLOCK_ANNOUNCEMENT: NCAP block announcement 

request is sent by the tester. The publication key is “04” [8: Table 135 page 242]. The 

response is an announcement message from the NCAP under test. Table 2 shows the 

fields of this packet. Magic number (implementation-dependent) identifies this packet as 

a publish/subscribe message. The version of data encoding style is the next byte. Total 

message and header lengths are variable and represented by 4 bytes. Publication keys are 

defined in Dot1 as unsigned integer type and 8 bits long [8: page 242 table 135].  

PSK_NCAPBLOCK_ANNOUNCEMENT: NUT is expected to respond to a request 

for announcement with a PSK_NCAPBLOCK_ANNOUNCEMENT message. 

Publication key for this operation is “02”. This publication delivers the network-specific 

information on the NUT such as its object dispatch address and object id that will include 

network address information depending on the particular networking protocol.  

Table 2. Packet formats of PSK_REQUEST_NCAPBLOCK_ANNOUNCEMENT:  

Byte  Interpretation  Details

0-1 Magic Number, Version 0xF7, 0x04 

2-3 Total Message Length 0xNN NN
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4-5 Header Length 0xNN NN

6 Publication Key 0x04 [PSK_REQUEST_ 
NCAPBLOCK_ANNOUNCEMENT] 

7-14 Publication Domain 0xFF FF FF FF FF FF FF FF 

15-16 Publication Topic 0x00 00 [Not applicable]

17-18 Publication Contents 0x00 00 [Not applicable]

and PSK_NCAPBLOCK_ANNOUNCEMENT: 

Byte  Interpretation  Details

0-1 Magic Number, Version 0xF7, 0x04

2-3 Total Message Length 0xNN NN 

 4-5 Header Length 0xNN NN 

6 Publication Key 0x02 [NCAP_BLOCK_ANNOUNCEMENT] 

7-14 Publication Domain 0xFF FF FF FF FF FF FF FF

15-16 Publication Topic 0x00 00 [Not Applicable]

17-20 
+ N 

Publication Contents 0x|00 02|: number of arguments – in this case, 
there are two arguments, object tag and object 
dispatch address. 
|datatype|: (1 byte) object tag 
|object tag|: (N bytes) 1st argument of this 
publication 
|datatype|: (1 byte) object dispatch address 
|object dispatch address |:  (N bytes) 2nd  

D.2.II. Client/Server Packet Format 

 Once the address of NUT is obtained using announcement messages, point-to-

point connections are possible. For example, in the case of a TCP/IP network with 

Ethernet as the data link layer, the publication contents in the 

PSK_NCAPBLOCK_ANNOUNCEMENT can reveal the object dispatch address in the 

form of: (i) OctetArray[N] as ipAddress; (ii) UInteger16 as portNumber; (iii) 
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OctetArray[N] as the objectID, where the IP Address may be encoded as a four element 

OctetArray with each byte containing one octet. IP Address may also be encoded as a 

human-readable ASCII string without a NULL terminator. An example case is with IP 

Address of 192.168.1.100, the corresponding four element OctetArray on-the-wire data is 

00 04 C0 A8 01 64, and the human readable on-the-wire-data becomes 00 0D 31 39 32 2e 

31 36 38 2e 31 2e 31 30 30. Test procedures are implemented for a selected set of 

mandatory operations listed in Table 1. An example c2s/s2c message is presented below: 

GetNetworkVisibleServerObjectProperties: Network visible server object properties 

are retrieved using the operation id of 4106. Each block object properties will be listed 

with identification. Format for the elements in the array of the server object properties 

will follow the sequence of object tag, owning block object tag, object dispatch address, 

object name, and block cookie. The number of blocks on the NUT and their object 

properties are retrieved using this operation. The packet format is included in Table 3 for 

c2s request and the s2c response packets. 

 

Figure 9. Client/Server communications using the attributes from Dot1 [8: p. 29 fig. 6]. 

Table 3. The c2s GetNetworkVisibleServerObjectProperties message: 
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Byte  Interpretation  Details 

0-1 Magic Number, Version 0xED, 0x04 

2-3 Total Message Length 0xNN NN 

 4-5 Header Length 0xNN NN 

6-16 Server Object’s 
ObjectID 

0x|NN NN|: length  
|03|: UUID Algorithm ID 
|NN NN NN NN NN NN|: MAC address (6 bytes) 
|NN NN|: miUUID (minor Universal Unique 
Identifier) 

17-18 OperationID  0x10 0A [4106: GetNetworkVisibleServer…] 

19 Execute Mode 0x00 

20-21 ClientPort Block Cookie 0x00 00 [NOT_SET] 

22-23 Input Arguments 0x00 00 

24-25 Expected Number of 
Output Arguments 

0x00 02 

and, the s2c GetNetworkVisibleServerObjectProperties message: 

Byte  Interpretation  Detail 

0-1 Magic Number, Version 0xD5, 0x04 

2-3 Total Message Length 0xNN NN 

4-5 Header Length 0xNN NN 

6-16 Server Object’s 
ObjectID  

0x|NN NN|: length  
|03|: UUID Algorithm ID 
|NN NN NN NN NN NN|: MAC address (6 bytes) 
|NN NN|: miUUID (minor Universal Unique 
Identifier) 

17-18 OperationID 0x10 0A [4106: GetNetworkVisibleServer…] 

19 Execute Mode 0x00 

20-21 ServerPort Block 
Cookie 

0x00 00 [Not Set] 

22-25 C/S Return Code 0xNN NN NN NN 
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26-
29+N 

Return Arguments 0x|00 02|: number of arguments – in this case 
this_block_object_tag and server_object_properties 
|datatype|: (1 byte) object tag (0x1A)  
| this_block_object_tag |: (N bytes) 1st arg. of 
operation 
|datatype|: (1byte) object properties array (0x19). 
|server_object_properties|: (N bytes) 2nd arg. of 
oper. 

E. Implementation 

 The NCAP software has been implemented in java to have a reference version of 

an NCAP using the open source implementation as a reference [21]. The software 

implementation has a user interface to display which tests are being run. It initializes 

networking functions, follows the sequence of events in the tests to put together 

messages, marshals the messages, and then sends them to the network as outlined in Fig. 

10. Listening thread demarshals and parses the messages for the tests.  

Figure 10. Flow of testing software 
program. 
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In addition, LabView implementation has been developed based on data types defined in 

Dot1. Typical test results from the LabView reports include conformance and functional 

compliance results. Tests have been conducted on NCAP units manufactured by 

Mobitrum Inc. [22]. These NCAP units also follow the XDR format and the same packet 

field definitions with the tester. Two test results are presented in this paper, one with 

multicast messages and another with client-server messages. 

E.1. Publication Test Results: The tester waits for ΔT for an announcement from the 

NCAP that has just been connected to the network. After the timeout, NCAP under test 

(NUT) will be reported on whether it initiated its dynamic announcements. Then the 

tester sends a request for an announcement. This message is a multicast that addresses all 

NCAPs subscribed to the specific publication key of “PSK_REQUEST_ 

NCAPBLOCK_ANNOUNCEMENT.” The testing setup has only one NCAP under test.  

Time-out expired, NUT does not have a dynamic announcement.

Tester REQUEST_NCAP_ANNOUNCEMENT NCAP under test

ANNOUNCEMENT message received from NUT:Fu
nc
tio
na
l

  (a) 
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C
on
fo
rm
an
ce

(b) 
Figure 11. (a) Functional testing of configuration of the NCAP for dynamic vs. static 
announcements. (b) Conformance verification of fields in return packet. 

The received message, PSK_ NCAPBLOCK_ANNOUNCEMENT, is parsed for 

conformance verification. The message will be parsed to verify all packet fields. Figure 

11 shows some of the fields in the test results of a successful test that indicates the NUT 

does not have a dynamic announcement and its return packets for the announcement 

request passed the conformance test. The announcement message has two arguments: 

object tag and object dispatch address. In this implementation, object tag and object 

identification refer to one composite entity: a universally unique identifier assigned to 

each NCAP unit that is composed of IP address, port number, and the object id of the 

NCAP. 

E.2. Data Exchange Test Results: The test verifies that the NUT has an active 

(FB_RUNNING) function block to report readings from a sensor. Figure 12 (a) shows the 

server to client message received from the NUT with the correct operation id, major 

return code, and the function block state. A GetChannelData message triggers the NUT to 

send the readings at the update rate. In this implementation, temperature sensor readings 



26 
 

have been reported. A simple conversion reports the average temperature to be 70 F 

based on the sensor readings.  

Tester GetFunctionBlockState NCAP under test

Message received from NUT:

S
er
ve
r t
o 
C
lie
nt
 M
es
sa
ge

(a)

...

Tester GetChannelData NCAP under test

Message received from NUT:

Average 
Temperature= 70

...

S
er
ve
r D
at
a 
R
ep
or
t

(b) 
Figure 12. (a) Function block state is returned as FB_RUNNING which is suitable for 
sensor readings and reporting. (b) Channel data has been posted for temperature sensor. 

F. Conclusions 

IEEE 1451-based smart sensor technology is expected to be the key enabling 

technology to implement distributed control systems. In particular, IEEE 1451.1 will 

provide network access and communications among different smart sensors through a 

network environment and function as a gateway to sensor information. As many smart 

sensors technologies are being implemented by different research and industry groups, 

testing the interoperability of these implementations is necessary to ensure proper system 
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integration and interaction without regard to any specific technology and implementation. 

The advantage of the Dot1 standard is its clear definition of the architecture of a smart 

sensor, along with the software and network communications functions to keep the sensor 

in a known state. 

 To ensure that an IEEE 1451 implementation will interoperate within 

heterogeneous network environment, testing strategies are developed and adopted in this 

paper. The paper describes the Dot1 test cases and an integrated software tool at the 

application layer that executes these testing procedures when connected to smart sensors. 

The testing tool focuses on system perspective and exercises all the functionalities among 

NCAPs. These test cases are developed for Conformance testing and Functionality 

testing. The Conformance testing captures the general packet format dissection and 

standard compliance; while the Functionality testing tests the behavior of a smart sensor 

as it responses to different events. All these testing will help manufacturers to develop 

interoperable units and consequently enable better control and fault management with 

easier access to monitoring of physical phenomenon. 
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