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ABSTRACT 

A characteristic feature of the Fourier Power Density Spectrum (PDS) ob- 
served from black hole X-ray binaries in lowlhard and intermediate spectral 
states is a broad band-limited noise, characterized by a constant below some fre- 
quency (a "break" frequency) and a power law above this frequency. It has been 
shown that the variability of this type can be produced by the inward diffusion 
of the local driving perturbations in a bounded configuration (accretion disk or 
corona). In the framework of this model, the perturbation diffusion time to is 
related to  the phenomenological break frequency, while the PDS power-law slope 
above the "break" is determined by the viscosity distribution over the configura- 
tion. The perturbation diffusion scenario explains the decay of the power of X-ray 
variability observed in a number of compact sources (containing black hole and 
neutron star) during an evolution of theses sources from low/hard to highlsoft 
states. We compare the model predictions with the subset of data from Cyg X-1 
collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of 
the Cyg X-1 PDSs demonstrates that the observed integrated power P, decreases 
approximately as a square root of the characteristic frequency of the driving os- 
cillations vd,. The RXTE observations of Cyg X-1 allow us to infer Pd, and to as 
a function of vd,. Using the inferred dependences of the integrated power of the 
driving oscillations Pdr and to on vdr we demonstrate that the power predicted 
by the model also decays as PXsdtff ix vd,o.5 that is similar to the observed P, 
behavior. We also apply the basic parameters of observed PDSs, power-law index 
and low frequency quasiperiodic oscillations. to  infer Reynolds (Re) nunlber from 
the observations using the metllod developed in our previous paper. Our analysis 
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shows that Re-number increases from values about 10 in low/hard state to that 
about 70 during the high/soft state. 

Subject headings: accretion, accretion disks-black hole physics-stars:individual 
(Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes 

1. Introduction 

The main goal of the presented work is to  explain a decay of the emergent time variability 
of X-ray emission in compact sources when these sources evolve from lowlhard (LH) t o  
highlsoft (HS) states [see Remillard & McClintock (2006) and Titarchuk, Shaposhnikov & 
Arefiev (2007), hereafter TSA07, for details of observations]. In particular, power density 
spectrum (PDS) of black hole binaries in hard states is dominated by a component, which 
has a specific shape roughly described by a broken power-law. The low-frequency part is 
mostly flat, while the power-law index a above the "break" frequency ubr is variable between 
1 and 2. It is well established that the fractional root-mean-square (rms) variability in a 
source lightcurve decrease as a source evolves from LH state to  HS state. Simultaneously, 
both ub, and a increase. Although empirical shot-noise models were able to describe in 
general the observed PDS shape (Focke et al. 2005), the physical picture explaining the 
observed evolution during spectral transitions was missing. Moreover, shot-noise models 
were challenged by the linear absolute rms-flux relation (Uttley, McHardy & Vaughan 2005; 
Uttley 2004). This rms flux relation assumes that amplitudes and time-scales of shots are 
not independent, but are related in some way. 

Lyubarskii (1997) was the first to suggest a model for this time variability production 
in the accretion powered X-ray sources. He considered small amplitude local fluctuations 
in the accretion rate at each radius, caused by small amplitude variations in the viscosity, 
and then studied the effect of these fluctuations on the accretion rate at  the inner disc edge. 
His linear calculations show that if the cliaracteristic time-scale of the viscosity variations 
is everywhere conlparable to the viscous (inflow) time-scale, and if the amplitude of the 
variations is independent of radius, then the power spectruni of luminosity fluctuations is 
a power-law l l u .  If the amplitude of the variations increases with radius. the slope of the 
pourer spectrum of the luminosity variations is steeper than 1. Lyubarskii pointed out that 
he had no physical illode1 for the cause of such fluctuations. Uttley, AIcHardy &L Vaughan 
(2005) pointed out that rills-flux relation is naturally explained in the franlework developed 
by Lyubarskii. 

TSA07 formulated and solved the problem of local driving perturbation diff~lsion in a 



disk-like configuration. The problem of the diffusive propagation of the space distributed 
high-frequency perturbations is formulated as a problem in terms of the diffusion equation for 
the surface density perturbations. This equation is combined with the appropriate boundary 
conditions. The formulation of this problem and its solution are general and classical. The  
parameters of the resulting PDS, diffusion time scale of the diffusion propagation of the  
local perturbations to and the power-law index of the viscosity distribution over the disk-like 
configuration a,  are essential parameters of diffusion in a given bounded configuration. In 
TSA07 we call our model for the PDS of Green's function of the bounded configuration as 
a white-red noise (WRN) and we adopt this name throughout this paper. 

The problem formulation was similar to the Lyubarskii's scheme. However, the method 
of solution is different. Lyubarskii treated the factorization of the driving term (i.e. separat- 
ing it into two parts each depending on time and radius only) by linearizing the system. In 
TSA07 the analytical solution is obtained for the case of the factorized driving sources. Then. 
using the mean value theorem we showed that the general solution is simply a convolution of 
the  response (Green's function) signal of the configuration and the mean driving signal in the 
configuration. Thus the resulting power spectrum of the X-ray signal, as a convolution, is a 
product of the power spectrum related to the disk-like configuration response (the Green's 
function) and that related to the perturbation sources (sources of driving oscillations). The 
Green's function PDS is a white-red noise power spectrum (WRN). Specifically, the low fre- 
quency (LF) asymptotic form of the WRN PDS, when the frequency is less than the inverse 
of diffusion timescale in the disk t i 1 ,  is characterized by a flat shoulder (white noise). In 
other words, the LF white noise shoulder is insensitive to the source distribution and t o  
the viscosity law in the disk as a function of radius. The high frequency (HF) asymptotic 
form of WRN is a power law v-" with index a, which is determined by the viscosity and 
perturbation source distribution over the disk. When the viscosity linearly increases with 
radius and the perturbation sources distribution is quasi-uniform, the index is a = 312.  The 
basis of the presented power spectruill formation scenario is that the tinling signal of the 
WRN PDS shape is a result of diff~~sive propagation of driving perturbations in the bounded 
configuration (disk or Coillpton cloud) in the same way as X-ray photon spectrum is a re- 
sult of the photon diffusion (namely, upscattering of seed photons) in the same bounded 
configuration. 

The driving oscillation aillplitude is assumed to be a snlooth f~lilnction of the radius. 
TSA07 suggested that driving fluctuatiolls in the configuration can be introduced by g-mode 
driving oscillatioi~s at any given disk annulus. The local g-illode driving fluctuations, pro- 
duced possibly by local Rayleigh-Taj~lor local instabilities are high-frequency damped quasi- 
periodic oscillations (QPOs) which frequencies are related to the local Keplerian frequencies. 
As we mentioned above TSA07 formulated and solved a probleill of the diff~~sive propagation 



of the space distributed high-frequency perturbations in the bounded configuration. 

Our diffusion model for PDS is a product of WRN PDS and the driving source PDS 
(Lorentzian) . 

The WRK PDS is a power spectrum of the solution of the initial value (Cauchy) problem 
which is a linear superposition of exponential shots [see Wood et al. (2001)l. For example, if 
t he  driving perturbations are distributed according to  the first eigen-function of the diffusion 
operator then the bounded medium works as a filter producing just one exponential shot as  
a result of the diffusive propagation of eigen-function distribution of the seed perturbations. 
In the general case the resulting signal is a linear superposition of exponential shots which 
are related to the appropriate eigen-functions. Furthermore, TSA07 demonstrate that the 
observed rms-flux relations [e. g. Uttley, McHardy & Vaughan (2005)] is naturally explained 
by our diffusion model. In the framework of the linear diffusion theory the emergent pertur- 
bations are always linearly related to  the driving source perturbations through a convolution 
of the disk-response (Green's) function and source distribution. 

An important question is what our diffusion model predicts for relative contributions of 
the  WRN PDS and the driving oscillation PDS in the resulting PDS and for a dependence 
of the integrated PDS power on the driving oscillation frequency. The next question is how 
this model dependence of the integrated power vs the driving oscillation frequency is related 
to  the observed dependence of that. The answers to these questions are the points of the 
presented study. 

In $2 we refer to details of Cyg X-1 observations with RXTE. In $3 we outline the main 
features of the diffusion model and related formulas. In $4 we show how the model integrated 
power vs the driving oscillation frequency fits X-ray data from Cyg X-1. In $5 we present 
the inferred correlation of Reynolds number with the driving oscillation frequency and the 
spectral state (photon index). Application of the paper results to the observed index-QPO 
frequency correlations is discussed in $6. Conclusions follow in §7. 

2. Observations 

For our analysis we used Cyg X-1 data from the Proportional Counter Array (PCA) and 
All-Sky Slonitor (ASSI) onboard RXTE [Swank (1999)l. The data are available through the 
GSFC public archive '. In this Paper we present the analysis of a representative subset of 
RXTE obser~rations of Cyg X-1. A reader can find the details of data reduction and analysis 



in Shaposhnikov & Titarchuk (2006) and TSA07. We chose approximately 200 observations 
t o  cover the complete dynamical range of the source evolution from low/hard to high/soft 
state. For the presented analysis we refit PDSs with our new model and we used the results 
of our previous spectral analysis for photon index r. 

To fit a PDS we used a sum of our perturbation diffusion model and one or two 
Lorentzians to account for the Low Frequency Quasi-Periodic Oscillations (LFQPOs). For 
higher photon inicies, when the source is close to high/soft state, the contribution of the 
accretion disk variability component sometimes becomes significant. It is observed as a n  
additional power law at  the lower frequencies (see TSA07 for details). We fit this component 
with simple power law, when it is needed. 

3. The main features of the model 

The resulting variability of X-ray signal is determined by the fluctuations of the lumi- 
nosity AL,(t). We assume that the mass accretion rate variations AM(O, t )  is converted 
with efficiency into the variations of the X-ray luminosity, i.e. AL,(t) = AM(O, t) .  
TSA07 show that the fluctuations of the resulting X-ray oscillation signal AL,(t) due to the 
diffusion of the driving perturbations is 

i.e. a convolution of the response (the Green's function) of the disk-like configuration Y(t)  
(WRN) and the source variability function ~ ( t ) .  The resulting power spectrum is 

where F, (w) , Fp (w) , Fy (w) are Fourier trailsforrns of AL, (t) , p( t )  , Y (t) respectively. Using 
the total power of the driving oscillations Pd, one can present the driving oscillation PDS as 
(see Eqs. 22 and B5 in TSA07) 

where ud,. is the driving oscillation frequency. Pd,  is a f ~ ~ l l  width of half maximum (FLYHJI) 
of the Lorentzian and a constant a varies in the range between 1 and 2 depending on the 
ratio of 2udr/rdr: 



For e~ample  a = 1 and a = 2 when 2vdr/fdr << 1 and 2vdr/rdr >> 1 respectively. 

In Fig. 1 we show a typical example of the model fit to  the data using Eq. (2). The 
parameters of PDS continuum for white-red noise cornponent (WRN) 1 1  Fy (w) 1 l 2  (see for 
details TSA07) are the diffusion time scale to, index of the power-law viscosity distribution 
+ and for the driving oscillation conlponent 1 1  F, (w) / l 2  they are vd, and Pdr (see Eq. 3) .  

The power-law index of the viscosity distribution $ is related to  the power-law index of 
the red noise in the WRN PDS (see TSAO7): 

and 
a = 2  for $ < 0 .  

The model predicted integrated power is (see TSAO7) 

where Q = Fdr/udr is a quality factor for the driving signal and D is a factor of order of unity. 
Equation (6) was derived use the mean value theorem for the integral of the product of two 
functions. In TSAO7 we assumed that a constant C related to  the mean value of 1 1 F,(u) 1 1 ;  
over the frequency integration range is about a few (see Appendix B2 in TSA07 for details). 
Here we specify and obtain C-constant when we compare the model dependence Pxjdiff on 
vdr with the observable P, on vd,. In order to make this comparison one should determine 
the best-fit parameter to and Pdr as functions of vdr Note that to derive Eq. (6) we also use 
the fact that the WRN PDS I /FY(W) I l 2  is normalized to l / (Dto)  where D ?  1. (see Eq. B16 
in TSA07). 

Now we follow the method suggested in TSAO7 to infer Pdr vs udr froill the observations. 
Samely, given the fact that the driving PDS is a constant at  frequencies v << udr we have 

Because for any power spectrunl I I F(d) 1 1 '  

we obtain that (compare with Eq. 2) 



Thus a combination of Eqs. (7) and (8) leads us to determination of the integrated 
power of the driving oscillations 

We remind a reader that the values of ud, and f dT are the best-fit PDS parameters, 1 / Fx (0)  / 1 
is the observed PDS value at u = 0 and 11Fy(0))112 is a value of the normalized WRN PDS 
a t  u = 0. As we mention above the integral of the normalized WRN PDS I I F y ( u ) )  1 l 2  over v 
is I / ( D t o ) .  

4. The integrated power vs driving oscillation frequency and photon index 

In Figure 2 we present the observed correlation of low frequency QPO centroid v~ with 
the  driving QPO frequency vdT (upper panel) and photon index l? with vdT (lower panel). 
These correlations imply that v~ along with vdT increase when the source becomes softer. In 
other words, the emission area [Compton cloud (CC)] contracts when the source evolves t o  
the  soft states. 

In Figure 3 we also see this effect of CC contraction as anticorrelation of the CC diffusion 
time scale to with udT. The inferred dependence of to vs vdT can be fitted by the power law 

-2.13*0.14 oc vdT 

We infer the integrated power of the driving oscillations Pd, vs vd, (see Eq. 9 )  and 
then we obtain the model integrated power Pz,diff vs vdr (see Eq. 6 ) .  In Figure 4 we show 

-1.8+0.16. ~~~~l~ that  the dependence of PdT vs udr can be fitted by power law PdT O: vd, 
the driving oscillation power Pd, decreases when the source (Cyg X-1) goes to softer states. 
Presumably the decay of Pdr with vdr is also related to the contraction of Compton cloud. 
The driving oscillations can result from the Rayleigh-Taylor (RT) local instability [see e.g. 
Chandrasekhar (1961)  and Titarchuk (2003)] 1 .  The decay of Pdr can be considered as a 
cumulative effect of the local Rayleigh-Taylor (RT) instability when the effective area of a 
given configuration (CC) undergoing RT oscillations contracts. 

In Figure 5 we present a conlparison of the observable PDS integrated power P, (black 
filled circle) with the model predicted P,sd,ff (crosses) (see Eq. 6 ) .  One can see that the 
dependence P,,d,ff on vd, is sinlilar to the observable correlation P, vs vd,. 

Sote that we obtain the factor C .Y 4 (see Eq. 6) by shifting a set of the values of P,.d,ff 
along Y-axis to fall on top of P, values. The power-law P, x I/;: 18'0.03 fits the dependence 
of the theoretical and observable integrated powers vs the driving oscillation frequency. 



5 .  Reynolds number of the accretion flow in Compton cloud configuration 

Using the best-fit parameters of the PDS we can also infer the evolution of the physical 
parameters of the source such as Reynolds number of the accretion flow Re, with the change 
of photon index T. In fact, TSA07 relate to with Re and a magneto-acoustic QPO frequency 

where a ~ *  is a numerical coefficient. Formula (10) leads to the equation 

t ha t  allows us to  infer a value of Re using the best-fit model parameters to and the QPO low 
frequency v~ which presumably equals to  YMA. Ultimately we can find the evolution of Re 
with the photon index I' given that u ~ ,  to and the viscosity index q evolve with I' (see Figs. 
2-3 and 6). 

In Figure 7 we present the inferred Reynolds number as a function of the photon index 
I'. We use Eq. (11) where we set a * ~  = 27r (see details of this assumption in TSA07) 
and  the observable correlations of v~ and to with r (see Figs. 2 and 3) .  One can see that 
Re-number steadily increases from 10 to  70 when the source evolves from low/hard state 
to  high/soft state. In contrast, TSA07 found that Re 8 i 2.5. We note, however, that in 
TSA07 only WRN model was used without accounting for driving oscillation distribution, 
which significantly affects the resulting value for $. They also used a limited set of data. 

Note the observed behavior of the Re-number vs I? and mass accretion rate was predicted 
by Titarchuk, Lapidus & Muslimov (1998), hereafter TLM98, where they formulated a 
transition layer model (TLM) and studied its consequences for observations. It is important 
to  emphasize that the Re-number along with the photon index I?, the low frequency QPO 
UL and the driving frequency vd, can be considered as characteristics of the spectral state. 
All of them correlate with each other. 

6. Photon index-QPO frequency correlation 

TLlI98 showed that the outer (adjustment) radius of the transition layer Rout mea- 
sured in the dilllensionless units with respect to  Scl~warzschild radius Rs = 2GllI/c", rout = 

/ Rs. anticorrelates with Re-nunlber or photon index I' (spectral state) only. Thus v~ 
(or v , ~ ~ . ~ )  as a ratio - V7r.4/R,ut should correlate with r (or Re-nuillber) where values v~ 
related to the same I' for different sources sllould be inversely proportional to a inass of 



the central object (black hole or neutron star). Kote that a plasma velocity VhIA4 is also a 
function of r only. The comparison of the observed index-QPO frequency correlations for 
two  different sources (with two different masses) should lead to  determination of their rela- 
tive masses with respect each other. This is the main idea behind the method of weighing 
black holes (TLM98) recently applied for BH mass determination in a number of Galactic 
a n d  extragalactic sources [see Titarchuk, & Fiorito (2004); Fiorito & Titarchuk (2004); 
Dewangan, Titarchuk & Griffiths (2006); Strohmayer et al. (2007) and Shaposhnikov & 
Titarchuk (2007)l. 

7. Conclusions 

We explain the decay of the emergent time variability of X-ray emission in compact 
sources when these sources evolve from low/hard to high/soft states. We find that the 
resulting power P, from Cyg X-1 decays with the driving oscillation frequency udr as P, O( 

-0 .5  
Udr . 

We show that the reciprocal of the diffusion time scale of the perturbation t i1 ,  the low 
frequency QPO UL, the driving oscillation frequency udr, inferred by fitting the Cyg X-1 
PDSs with our diffusion model, increase when the source evolves from low/hard state t o  
high/soft state. This behavior of the PDS characteristics implies that the Compton cloud 
contracts towards softer spectral states. The driving oscillations are probably caused by the 
local Rayleigh-Taylor instability which cumulative Pdr decreases when the effective area of 
the configuration producing the RT oscillations contracts. The decay in driving power leads 
to  the decay in the total observed variability power from the source. Using the fact that t,', 
UL, udr increase with r and Pdr, Px decrease with r we conclude, as a result of our analysis, 
tha t  the Compton Corona shrinks when Cyg X-1 goes from low/hard state to high/soft state. 

Our extensive data analysis of the power spectra from Cyg X-1 with an application 
of the method of Re-number determination developed in TSA07 indicates that Re related 
to  Cornpton cloud configuration increases from values about 10 in low/hard state t o  that 
about 70 in high/soft state. We confirill the predictions by TLLI98 that Re-number should 
increase with index and QPO frequencies. Thus one can conclude that the observable index- 
QPO correlation is probably driven by the increase of Re-number when the source evolves 
froill low/hard state to high/soft state. It is worth noting that inverse proportionality of the 
low-frequency QPO with respect BH illass in the index-QPO correlation leads to the illethod 
~veighing BHs eilzploying this index-QPO correlation. 
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Frequency, hz 

Fig. 1.- A partic~ilar example of observable P D S  The PDS continuunl is fitted by our 
diffusion PDS nlodel which is a product of WRY PDS and the driving oscillation Lorentzian. 
We also use a siniple Lorentzian to fit QPO features. 



Fig. 2.- Upper panel: low QPO frequency u~ vs driving QPO frequency v d ,  lower panel: 
photon index F vs u d r  . 



Fig. 3.- The best-fit model parameter, diffusioil time scale to vs Vdr The dashed line is the 
-2.13d~O. 11 best fit power law to cc vdr 
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-1.81t0.16 Fig. 4.- Inferred Pdr vs udr. The dashed line is the best fit power law Pdr cx udr 
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Fig. 5.- Comparison of the model Px>dzff vs ud, (crosses) (using Eq. 6) with the observable 
Px vs ~ / d ~  (black filled circle) The dashed line is the best fit power law P, M u~0.48'0~03.  



Fig. 6.- The best-fit index of the viscosity distribution w vs r 
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Fig. 7.- Inferred Reynolds number Re (using to,  V L :  ,+, and Eq. 11) vs r. 




