Atomic Calculations and Laboratory Measurements Relevant to X-ray Warm Absorbers

Tim Kallman (NASA/GSFC) + M. Bautista & C. Mendoza (IVIC, Venezuela, P. Palmeri (Mons, Belgium)

X-ray spectral analysis, part 1

How did we get here?

1996: rates, codes and astrophysics
1999: atomic data needs for X-ray Astronomy
2005: XDAP

then: raymond-smith: 49.8 kbytes
now: atomdb: 135 Mbytes

theoretical tools

Packages:
- Cowan/ HFR
- Z expansion
- MCHF
- MCDF/GRASP
- Hullac
- fac
- Autostructure/superstructure
- Rmatrix

Features:
- Configuration interaction/superposition of configurations
- Non-orthogonal orbitals
- Semi-empirical corrections
- Semi relativistic or Breit-pauli approximation to relativistic hamiltonian
- Coupled to collisional-radiative code: very efficient calculation of radial part of matrix elements
- Distorted wave scattering
- Scattering: continuum wavefunctions calculated in close-coupling approximation

Experimental tools

- Traps (ebit)
- Storage rings
- Synchrotron light sources
 - (+beams)

The algorithms are not new, but are enabled on a large scale by computing improvements

+ Databases: Chianti, atomdb, ornl, adas, topbase
Dielectronic recombination

Challenges:
- DR is a resonant process, need accurate resonant energies
- Storage ring and ebit measurements: all L-shell ions of iron, M-shell under way (Savin et al.; Muller; Schippers ...)
- These are key for verifying theory, and for demonstrating the importance of accurate resonance structure

Calculations:
- Fac: total DR rates for H-Ne isosequences
- Autostructure: state-resolved rates for isosequences He-Na (?)-like ions for elements He-Zn. (Badnell, Zatsarinny, Altun et al.)
- Agreement with each other, and experiment, is ~20%

Collisional ionization

Challenges:
- Rate from ground state is all that is needed for many purposes: experiments can be used directly
- Lotz --> Arnaud and Rothenflug --> Arnaud and Raymond --> Mazzotta: fit to early measurements... discrepancies?
- Metastables can dominate
- Storage ring experiments (Muller et al.)
- Can eliminate metastables, due to 'cold' beam
- Reveal important effects: REDA, EA

Photoionization cross sections

Challenges
- Need for inner shells, excited states (--> RR)
- Importance of resonances

Experiment:
- Synchrotron/ion beams

Calculations
- Rmatrix (iron project)
- Autostructure

Ionization balance

Bryans et al. 2005
- Put together Autostructure DR rates+ collisional ionization rates for elements
Accurate wavelengths are key to line ids, and to anchoring semi-empirical structure calculations. Theoretical calculations are not (generally) accurate enough to distinguish lines in rich X-ray spectra. Lab measurements are key – Ebit has been a leader in this field.

X-ray spectral analysis

Atomic constants

Kinematics, geometry

"Astrophysics"

needs

- Auger
 - Following inner shell ionization, cascade of electrons
 - Correlated line emission?
- Charge exchange: 'non-traditional' X-ray sources: planets, solar system objects
- Trace elements
- Protons
 - Thermal: angular momentum changing collisions
 - Non-thermal: spectral signatures of cosmic rays.
- Dust/molecules/low ionization gas: inner shells
- Inner shells: inner shell lines, photoionization cross sections, collision strengths
- Collisional ionization: loose ends?
- Collisional processes away from equilibrium peak?

photoionized models

- Start with a single photoionized component
- Pure absorption
- Choose single turbulent width to fit majority of lines,
 \(V_{turb} = 300 \text{ km/s} \)
- Use \(z = 0.007 \), compare with \(z_{\text{ngc3783}} = 0.00938 \)
 \(\rightarrow V_{out}\text{FW}=700 \text{ km/s} \)
- Best fit ionization parameter: \(\log \xi \approx -2 \).
oxygen

neon

magnesium

silicon

sulfur

iron

Si VII-XI K lines

Al XIII

Al XII

Fe XX-XXII
pure absorption photoionized models: multiple ξ components

- 2 Component Fit,
 - logξ=2. (as before)
 - logξ=0. (produces Fe M shell UTA)

Other parameters the same as single component:
 - z=0.007,
 - v_{turb}=300 km/s
O VII Lα emission component
What if we try a Continuous distribution of ionization parameter, 0.1<log\(E)<2.4?\]

\[\rightarrow\] Complete ruled out

Comparison of photoionization models

<table>
<thead>
<tr>
<th></th>
<th>X*release (2.1kW)</th>
<th>X* sets (2.1kW)</th>
<th>warmabs</th>
<th>Warmabs 2.1kW</th>
<th>Other phase</th>
<th>Other: titan</th>
<th>photoion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xspec interface</td>
<td>tables</td>
<td>tables</td>
<td>analytic</td>
<td>analytic</td>
<td>y</td>
<td>y</td>
<td>analytic</td>
</tr>
<tr>
<td>Atomic data</td>
<td>KB01</td>
<td>KB01, K04, chianti</td>
<td>KB01</td>
<td>KB01, K04, chianti</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>'real slab'</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
<tr>
<td>'Self consistent SED'</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>nsite</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>Radiative transfer</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>'dynamics'</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>(y)</td>
<td>y</td>
<td>y</td>
<td>n</td>
</tr>
</tbody>
</table>

Now try absorption + thermal emission photoionized models

Add component due to 'thermal' photoionization (i.e. Recombination-collisional excitation processes): 'photemis'

Component has redshift \(z=0.009\), i.e. redshift of object
Now try photoionized scattering models

- Photemis model does not account for scattered emission.
- To test this, we apply method from theory of hot star winds, (SEI) method (Lamers et al. 1992) assumes ordered, radial supersonic flow.
- Apply SEI profile to all spectrum lines, with depth parameter proportional to depth calculated by warmabs.
- Free parameter is ratio of scattered emission to absorption, C.

Wind models

Now try multicomponent models

- UV spectra show some X-ray warm absorber lines correspond to multiple narrow components in the UV.
- Multabs is an attempt to test whether multiple discrete components can mimic a single feature.
- Several identical warmabs components, each with thermal width are spread evenly across an energy interval determined by vturb.
- The number is determined by a 'covering fraction', C=1 corresponds to a black trough, C=0 corresponds to one thermal component.

This affects the Curve of growth, eg. For O VIII Lx, \(v_{\text{line}}=300, v_{\text{thrm}}=60, C=1, a=0.01 \)
A summary of $\chi^2/8192$

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian notch</td>
<td>11945</td>
</tr>
<tr>
<td>Single component absorption</td>
<td>16093</td>
</tr>
<tr>
<td>2 component absorption</td>
<td>15186</td>
</tr>
<tr>
<td>+photemis</td>
<td>15161</td>
</tr>
<tr>
<td>Wind, C=1</td>
<td>21626</td>
</tr>
<tr>
<td>multabs</td>
<td>18974</td>
</tr>
</tbody>
</table>

The pure absorption 2 component model looks best...

dynamical models: torus winds

- Following suggestions by Balsara and Krolik (1984), Krolik and Kriss (1996)
- Assume a torus at 0.1 pc about a $10^6 M_\odot$ black hole
- Initial structure is constant angular momentum adiabatic (cf. Papaloizou and Pringle 1984)
- This structure is stable (numerically) for >20 rotation periods
- Choose $T<10^4 K$, $n~10^8$ cm$^{-3}$ for unperturbed torus
- Calculate dynamics in 2.5d (2d + axisymmetry) using zeus-2d

X-ray spectral analysis: a different procedure

dynamical models: torus winds

- Add illumination by point source of X-rays at the center
- Include physics of X-ray heating, radiative cooling --> evaporative flow (cf. Blondin 1994)
- Also radiative driving due to UV lines (cf. Castor et al. 1976; Stevens & K. 1986)
- Formulation similar to Proga et al. 2000, Proga & K. 2002, 2004

Velocity and density fields
results

- Find strong evaporative flow, $\dot{M} \sim 10^{-5} \, M_{\odot}/yr$
- Initial flow is inward from illuminated face
- Later flow is isotropically outward as torus shape changes
- $T_{\text{comp}} \sim 10 \, T_{\text{esc}}$, $t_{\text{heat}} \ll t_{\text{rot}}$
- Find gas at intermediate ionization parameters
- Match to data? Region of warm flow is narrow

Extra slides

Comparison with previous work

<table>
<thead>
<tr>
<th>Netzer</th>
<th>Krongold</th>
<th>Blustin</th>
<th>Me</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(U)</td>
<td>-0.6, -1</td>
<td>0.76</td>
<td>0.45</td>
</tr>
<tr>
<td>Log(ξ_1)</td>
<td>3.7, 3.1</td>
<td>2.25</td>
<td>2.4</td>
</tr>
<tr>
<td>Log(N_1)</td>
<td>22.2</td>
<td>22.2</td>
<td>22.45</td>
</tr>
<tr>
<td>Log(U)</td>
<td>-2.4</td>
<td>-0.78</td>
<td>-1.55</td>
</tr>
<tr>
<td>Log(ξ_2)</td>
<td>0.69</td>
<td>0.72</td>
<td>0.3</td>
</tr>
<tr>
<td>Log(N_2)</td>
<td>21.9</td>
<td>21.6</td>
<td>20.73</td>
</tr>
</tbody>
</table>

Krongold et al. 2004

- 100 absorption features
 - blueshifted, v~800 km/s
 - broadened, v_turb~300 km/s
 - emission in some components
 - fit to 2 photoionization model components
 - Fe M shell UTA fitted using Gaussian approximation
 - Full global model

Chelouche and Netzer 2005

- Combined model for dynamics and spectrum
 - Assumes ballistic trajectories
 - Favors clumped wind

Blustin et al. (2004)

- Fitted the XMM RGS spectrum using global model
 - Also find evidence for two components
 - Omit Ca
 - Include line-by-line treatment of M shell UTA, but still miss some
 - Claim evidence for higher ionization parameter material
 - Require large overabundance of iron

- Work so far on fitting warm absorber spectra has concentrated on the assumption of a small number of discrete components
 - This places important constraints on the flow dynamics, if it is true
 - There is no obvious a priori reason why outflows should favor a small number or range of physical conditions
 - In this talk I will test models in which the ionization distribution is continuous rather than discrete, and discuss something about what it means
 - Previous tests of this have invoked simplified models for the Fe M shell UTA which may affect the result
Examples of (2)
- How well do we do? Warm absorber example
- What's wrong?
 - Atomic data incompleteness
 - Atomic data errors
 - Incorrect physical assumptions
- Some areas of recent progress
 - Combined emission/absorption models
 - Thermal emission
 - Scattered emission
- Things to watch out for
 - Finite resolution
 - Granularity
 - Emission/absorption tradeoffs
- Some areas of recent progress

Comparison of model properties

<table>
<thead>
<tr>
<th></th>
<th>X* release (2.1kx4)</th>
<th>X* beta (2.11)</th>
<th>warmabs</th>
<th>Others (titan apex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xspec interface</td>
<td>tables</td>
<td>tables</td>
<td>analytic</td>
<td>various</td>
</tr>
<tr>
<td>Atomic data</td>
<td>KB01</td>
<td>KB01, KB04, chaint5</td>
<td>KB01, KB04, chaint5</td>
<td>various</td>
</tr>
<tr>
<td>'real' slab</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td>various</td>
</tr>
<tr>
<td>Energy resolved</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>various</td>
</tr>
<tr>
<td>Self-consistent SED</td>
<td>y</td>
<td>y</td>
<td>(y)</td>
<td>(y)</td>
</tr>
<tr>
<td>nite</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>radiative transfer</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>dynamics</td>
<td>n</td>
<td>n</td>
<td>(y)</td>
<td>n</td>
</tr>
</tbody>
</table>

1) simple models: gaussian notches

As a start, fit to a continuum plus Gaussian absorption lines. Choose a continuum consisting of a power law +0.1 keV blackbody + cold absorption. Absorption lines are placed randomly and strength and width adjusted to improve the fit.
Results of notch model:

- requires ~950 lines
- Ids for ~100
- 300 km/s < v/c < 2000
- Allows line Ids
- Shows distribution of line widths, offsets

Ionization parameter of maximum ion abundance vs. line wavelength for identified lines

--> statistics of the line widths implies bound on velocity, v < 1000 km/s; small number of components of photoionized gas