METABOLIC COST OF EXPERIMENTAL EXERCISES

James T. Webb¹, Ph.D. and Michael L. Gernhardt², Ph.D.

¹ Scientific Aerospace Research Consulting (SARC), LLC
San Antonio, TX

² EVA Physiology, Systems & Performance (EPSP)
NASA Johnson Space Center, Houston, Texas
INTRODUCTION

- 8 activities performed during 17 altitude decompression sickness (DCS) protocols at Brooks City-Base, TX from 1983-2005
- Determination of metabolic cost of activity during nearly all of those subject-exposures was not accomplished
 - Equipment, interest, and funding limitations
- Subject activities during each minute of exposure were documented and consistent
- Isometric leg, isometric arm, dynamic leg, and dynamic arm exercises were tested at an equivalent metabolic cost - No difference in DCS risk
 - Mode of activity not the major factor
BACKGROUND & METHODS

• Potential relationship between metabolic cost and DCS risk postulated late in the research
 – Approximation of metabolic cost vs. DCS incidence in 4 profiles
 – Same altitude, time at altitude, and prebreathe time (3 of 4 primary DCS risk factors)
 – Metabolic cost and DCS incidence appeared to be correlated

• Needed method for measuring metabolic cost
 – Ability to do the different activities consecutively w/o interruption
 – COSMED K4b² used by NASA for sub-maximal metabolic cost determinations
 » Breath-by-breath; \(\text{V}O_2 \); 30-sec averages
 » Seated rest control before each sequence of activity
SUBJECTS

- 22 [of the 30 planned] subjects performed the identical exposure activities at ground level in the same chamber used for the earlier altitude exposures.

- The protocol and informed consent were approved by the NASA JSC Committee for the Protection of Human Subjects and the Wright Patterson AFB Institutional Review Board.

<table>
<thead>
<tr>
<th>Age, y</th>
<th>Weight, #</th>
<th>Weight, kg</th>
<th>Height, in</th>
<th>Height, m</th>
<th>BMI</th>
<th>BF, %</th>
<th>VO2max, l/min</th>
<th>VO2max, ml/kg/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Mean</td>
<td>29.8</td>
<td>158.8</td>
<td>72.2</td>
<td>68.0</td>
<td>1.7</td>
<td>24.1</td>
<td>18.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Database Mean</td>
<td>30.1</td>
<td>172.3</td>
<td>78.3</td>
<td>69.0</td>
<td>1.8</td>
<td>25.4</td>
<td>19.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>
RESULTS

• Plotted vs. DCS during 4-h exposures to 30,000 ft following a 1-h prebreathe

• Parameters evaluated throughout each activity sequence
 – Mean VO_2 (R<0.50)
 – Mean Increase in VO_2 from seated rest control (R<0.43)
 – Mean % of VO_2peak (R<0.50)

• Parameters evaluated during the highest 1-min of each activity sequence
 – Mean VO_2 and Mean kcal/h (R<0.87)
 – Mean Increase in VO_2 from seated rest control (R<0.86)
 – Mean % of VO_2peak (R<0.90)
CORRELATIONS

% DCS vs. Percentage of VO2peak represented by the Highest Metabolic Cost in any 1 min; N=22

\[y = 0.0038x + 0.0552 \]

\[R^2 = 0.804 \]

\[R = 0.90 \]
DISCUSSION

• The correlation between DCS incidence and the highest 1-min metabolic cost or as a percentage of VO_2peak being much better than that between DCS incidence and average metabolic cost or average percentage of VO_2peak was unexpected.

• Possible reasons
 – Bubble formation resulting from more active muscle metabolism while decompressed
 – Muscle shear forces being greater during short-term relatively heavy exertion

• Possible implications
 – Measurement of VO_2 during a little as 1-min of an activity peak exertion may be a good DCS risk prediction tool based on % of VO_2peak
 – Beware of even short-term, high physical stress activity while decompressed
 – Plan for higher activity after additional exposure time (denitrogenation time)
PLANS

• The Brooks DCS Research database contains no exposures below 35,000 ft which required only seated rest and echo-imaging joint articulations.

• A prediction of significantly lower DCS risk for seated rest and echo-imaging joint articulations is implied by using data from the current research.

• Future research could include seated rest exposures and echo-imaging joint articulations at altitudes where analogous prebreathe and exposure durations could test the hypothesis that lower level (metabolic cost) activities would yield much less DCS risk.
 – 22,500, 25,000 ft, and 30,000 ft

• Update of the USAF Altitude DCS Risk Assessment Computer model may also be possible using the current data.

• Inclusion of these finding could improve DCS prediction using a NASA model.
CONCLUSIONS

• Correlation between average metabolic cost and DCS risk was poor

• There was a very good correlation between short-term higher level physical activity and DCS risk
 – Highest 1-min segment; Correlation = 0.90

• Prediction of DCS risk based on 1-min spikes in $\dot{V}O_2$ may be a useful tool in planning decompression activity scenarios
METABOLIC COST OF EXPERIMENTAL EXERCISES

James T. Webb, Ph.D. and Michael L. Gernhardt, Ph.D.