Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

Shun-fat Lung
TYBRIN, Inc.
Edwards, California

Chan-gi Pak
NASA Dryden Flight Research Center
Edwards, California

October 2008
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program is operated under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320
Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool

Shun-fat Lung
TYBRIN, Inc.
Edwards, California

Chan-gi Pak
NASA Dryden Flight Research Center
Edwards, California

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, California 93523-0273

October 2008
NOTICE
Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390
ABSTRACT

Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

NOMENCLATURE

CG center of gravity
F original objective function
FE finite element
GVT ground vibration test
g_i inequality constraints
h_j equality constraints
I_{xx} computed x moment of inertia about the center of gravity
I_{xy} computed xy moment of inertia about the center of gravity
I_{xxG} target x moment of inertia about the center of gravity
I_{xyG} target xy moment of inertia about the center of gravity
I_{yy} computed y moment of inertia about the center of gravity
I_{yz} computed yz moment of inertia about the center of gravity
I_{yyG} target y moment of inertia about the center of gravity
I_{yzG} target yz moment of inertia about the center of gravity
I_{zx} computed zx moment of inertia about the center of gravity
I_{zG} target zx moment of inertia about the center of gravity
I_{zz} computed z moment of inertia about the center of gravity
I_{zzG} target z moment of inertia about the center of gravity
J_i objective functions (optimization problem statement number
i = 1, 2, \ldots, 13)
K stiffness matrix
\tilde{K} orthornormalized stiffness matrix
L new objective function
M mass matrix
\(\tilde{M}\) orthonormalized mass matrix
MAC modal assurance criteria
MDAO multidisciplinary design, analysis, and optimization
m number of equality constraints
n number of modes
q number of inequality constraints
T transformation matrix
W computed total mass
\(W_G\) target total mass
\(X\) x-coordinate of the computed center of gravity
\(\bar{X}\) design variables vector
\(X_G\) x-coordinate of target center of gravity
\(Y_G\) y-coordinate of target center of gravity
\(Y\) y-coordinate of the computed center of gravity
\(Z\) z-coordinate of the computed center of gravity
\(Z_G\) z-coordinate of target center of gravity
\(\varepsilon\) small tolerance value for inequality constraints
\(\lambda\) Lagrange multiplier
\(\Phi\) computed eigen-matrix
\(\Phi_G\) target eigen-matrix
\(\Omega_j\) j-th computed frequency
\(\Omega_{jG}\) j-th target frequency

INTRODUCTION

One of the top-level challenges of multidisciplinary design, analysis, and optimization (MDAO) tool development for modern aircraft is synergistic design, analysis, simulation, and testing. This challenge puts a clear emphasis on synchronizing all phases of experimental testing (ground and flight), analytical model updating, high- and low-fidelity simulations for model validation, and complementary design. Compatible information flow between these procedures will result in a coherent feedback process for data-to-modeling-to-design continuity using systematic and competent vertically integrated design tools and ensure that the unique benefits of data gained from flight research are integrated into the vehicle development process.

One of the basic inputs into aeroservoelastic analysis is the underlying structural dynamics model, usually a finite element (FE) model. Generally created during aircraft
development by the builders, the accuracy and fidelity of this model with respect to the actual modal frequencies and shapes is critical. Models are often inaccurate, due to many factors such as joint stiffness, free play, unmodeled structural elements, or non-linear structural behavior. Thus, flight-test missions often require “tuning” of the original FE model, for aeroservoelastic envelope clearance, to match experimentally observed structural characteristics.

Accurate modeling of rigid body dynamics is important for flight control system design and aeroelastic trim analysis. In general, structural dynamics FE models for production aircraft need to be correlated to measured data to ensure the accuracy of the numerical models. Small modeling errors in the FE model will cause errors in the calculated structural flexibility and mass, thus propagating into unpredictable errors in the calculated aeroelastic and aeroservoelastic responses. If measured mode shapes will be associated with an FE model of the structure, they should be adjusted to reduce the structural dynamic modeling errors in the flutter analysis, thus also improving confidence of flight safety.

The primary objective of the current study is to add model tuning capabilities in an MDAO tool. This model tuning technique is essentially based on a non-linear optimization problem, with the variables to be minimized being the differences between the model and the experimental values, including the dynamics variables and the static loading deflections, the total mass, and center of gravity (CG) of the test article.

Model tuning is a common method used to improve the correlation between analytical and experimental modal data, and many techniques have been proposed (refs. 1, 2). These techniques can be divided into two categories: direct methods (adjust the mass and stiffness matrices directly) and parametric methods (correct the models by changing the structural parameters). The direct methods correct mass and stiffness matrices without taking into account the physical characteristics of the structures and may not be appropriate for use in model updating processes. In this report, the updating method used in the optimization process is the parametric method. In the optimization process, structural parameters are selected as design variables: structural sizing information (thickness, cross-sectional area, area moment of inertia, torsional constant, etc.); point properties (lumped mass, spring constants, etc.); and materials properties (density, Young’s modulus, etc.). Objective function and constraint equations include mass properties, mass matrix orthogonality, frequencies, and mode shapes. The use of these equations minimizes the difference between analytical results and target data.

OPTIMIZATION BACKGROUND

Discrepancies between ground vibration test (GVT) data and numerical results are common. Discrepancies in frequencies and mode shapes are minimized using a series of optimization procedures (ref. 3). Recently, the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) began developing an MDAO tool (ref. 4). This MDAO tool is object-oriented: users can either use the built-in
pre- and post-processor to convert design variables to structural parameters and generate objective functions, or easily plug in their own analyzer for the optimization analysis. The heart of this tool is the central executive module. Users will utilize this module to select input files, solution modules, and output files; and monitor the status of current jobs. There are two optimization algorithms adopted in this MDAO tool: the traditional gradient-based algorithm (ref. 5), and the genetic algorithm (ref. 6). Gradient-based algorithms work well for continuous design variable problems, whereas genetic algorithms can handle continuous as well as discrete design variable problems easily. When there are multiple local minima, genetic algorithms are able to find the global optimum results, whereas gradient-based methods may converge to a locally minimum value. In this research work, the genetic algorithm is used for the solution of the optimization problem.

The genetic algorithm is directly applicable only to unconstrained optimization; it is necessary to use some additional methods to solve the constrained optimization problem. The most popular approach is to add penalty functions in proportion to the magnitude of constraint violation to the objective function (ref. 7). The general form of the penalty function is shown in equation (1):

\[
L(\vec{X}) = F(\vec{X}) + \sum_{i=1}^{q} \lambda_i g_i(\vec{X}) + \sum_{j=q+1}^{m} \lambda_j h_j(\vec{X})
\]

where \(L(\vec{X}) \) indicates the new objective function to be optimized, \(F(\vec{X}) \) is the original objective function, \(g_i(\vec{X}) \) is the inequality constraint, \(h_j(\vec{X}) \) is the equality constraint, \(\lambda_i \) are the Lagrange multipliers, \(\vec{X} \) is the design variables vector, and \(q \) and \(m \) are the number of inequality and equality constraints, respectively.

Matching the mass properties, the mass matrix orthogonality, and the natural frequencies and mode shapes to target value at the same time is a multiple objective functions problem. The easy way to minimize multiple objective functions is to convert the problem into one with only a single objective function and optimize in the usual fashion, however, this is time-consuming. One of the solution methods for a multi-objective optimization problem is to minimize one objective while constraining the remaining objectives to be less than given target values. This method is employed in this report, since our main goal is to match the frequencies and mode shapes while minimizing the error in the rigid body dynamics and mass properties.

Mass Properties

The difference in the analytical and target values of the total mass, the CG, and the mass moment of inertias at the CG location are minimized to have the identical rigid body dynamics, as shown in equations (2) through (11).
\[J_1 = (W - W_G)^2 / W_G^2 \]
(2)

\[J_2 = (X - X_G)^2 / X_G^2 \]
(3)

\[J_3 = (Y - Y_G)^2 / Y_G^2 \]
(4)

\[J_4 = (Z - Z_G)^2 / Z_G^2 \]
(5)

\[J_5 = (I_{xx} - I_{XXG})^2 / I_{XXG}^2 \]
(6)

\[J_6 = (I_{yy} - I_{YYG})^2 / I_{YYG}^2 \]
(7)

\[J_7 = (I_{zz} - I_{ZZG})^2 / I_{ZZG}^2 \]
(8)

\[J_8 = (I_{xy} - I_{XYG})^2 / I_{XYG}^2 \]
(9)

\[J_9 = (I_{yz} - I_{YZG})^2 / I_{YZG}^2 \]
(10)

\[J_{10} = (I_{zx} - I_{ZXG})^2 / I_{ZXG}^2 \]
(11)

Mass Matrix

The off-diagonal terms of the orthonormalized mass matrix are reduced to improve the mass orthogonality as shown in equation (12):

\[
J_{11} = \sum_{i=1, j=1, i \neq j}^{n} \left(\bar{M}_i \right)^2
\]
(12)

where \(n \) is the number of modes to be matched and \(\bar{M} \) is defined as shown in equation (13):

\[\bar{M} = \Phi_T^T M_T \Phi_G \]
(13)

In the above equation the mass matrix, \(M \), is calculated from the FE model, while the target eigen-matrix \(\Phi_G \) is measured from the GVT. The eigen-matrix \(\Phi_G \) remains constant during the optimization procedure. A transformation matrix \(T \) in the above equation is based on Guyan reduction (ref. 8) or improved reduction system (ref. 9). This reduction is required due to the limited number of available sensor locations.
Frequencies and Mode Shapes

Two different types of error norm can be used. In the first option, shown in equations (14) and (15), the objective function considered combines an index that identifies normalized errors from the GVT and computed frequencies with another index that defines the total error associated with the off-diagonal terms of the orthonormalized stiffness matrix.

\[J_{12} = \sum_{i=1}^{n} \left(\frac{\Omega_i - \Omega_{G,i}}{\Omega_i} \right)^2 \]

(14)

\[J_{13} = \sum_{i=1, j=1, i \neq j}^{n} \left(\frac{K_{ij}}{\Omega_i \Omega_j} \right)^2 \]

(15)

The matrix \(\bar{K} \) are obtained from the matrix products shown in equation (16):

\[\bar{K} = \Phi_G^T K^T K \Phi_G \]

(16)

where the stiffness matrix, \(K \), is calculated from the FE model.

In the second option, shown in equations (17) and (18), the error norm combines the same index used above (which defines the normalized error in the GVT and computed frequencies) with another index which defines the total error between the GVT and computed mode shapes at given sensor points.

\[J_{12} = \sum_{i=1}^{n} \left(\frac{\Omega_i - \Omega_{G,i}}{\Omega_i} \right)^2 \]

(17)

\[J_{13} = \sum_{i=1}^{n} \left(\frac{\Phi_i - \Phi_{G,i}}{\Omega_i} \right)^2 \]

(18)

In this research, the second optimization option is employed since the definition of the objective function is much simpler than in the first option. Any errors in both the modal frequencies and the mode shapes are minimized by including an index for each of these in the objective function. For this optimization, a small number of sensor locations can be used at which errors between the GVT and computed mode shapes are obtained. Any one of \(J_i \) thru \(J_{13} \) can be used as the objective function with the others treated as constraints. This gives the flexibility to achieve the particular optimization goal while maintaining the other properties at as close to the target value as possible. The optimization problem
statement can be written as

Minimize: J_i

Such that: $J_k \leq \epsilon_k$, for $k = 1$ thru 13 and $k \neq i$

where ϵ_k is a small value which can be adjusted according to the tolerance of each constraint condition.

APPLICATIONS

In this section, the model updating technique is to be applied to assess the efficacy of the currently developed optimization algorithms and tools. Examples of minimizing errors between target values and analytical results of some representative test problems are presented.

Square Cantilever Plate

A cantilever plate, shown in figure 1, is used to demonstrate how to set up design variables, the objective function, and the constraints for the optimization process. The target configuration of the plate is 10 in. by 10 in. and 0.1 in. thick, containing 16 quadrilateral elements and 100 (20 × 5) degrees of freedom (DOFs). Only 12 DOFs, as shown in figure 1, are used to simulate sensor output. The modulus of elasticity and Poisson’s ratio are 1.0×10^7 psi and 0.3, respectively. The mass density is 2.39×10^{-4} slug/in3.

The FE analysis results based on the target configuration are used as target values. The optimization process starts by selecting thickness and mass density to be the design variables. Total mass, CG, moment of inertia, and mass orthogonality are selected as constrained equations. Frequencies and mode shape errors are selected as the objective function. Initial design variables of 0.5 in. thick and a mass density of 5.0×10^{-4} slug/in3 are modeled such that a discrepancy between the two models is generated. Twenty populations and 100 generations are used for the genetic algorithm. Mass properties, modal characteristics, and design variables before and after optimizations are given in table 1 and table 2. The thickness and mass density have converged to the target values and the frequencies and mode shapes have minimal errors. The optimization history of the objective function is shown in figure 2.

Aerostructures Test Wing

A second example is an experiment known as the aerostructures test wing (ATW) which was designed by NASA DFRC to research aeroelastic instabilities. Specifically, this experiment was used to study an instability known as flutter. Flight flutter testing is the process of determining a flight envelope within which an aircraft will not experience flutter. Flight flutter testing is very dangerous and expensive because predictions of the instability
are often unreliable due to uncertainties in the structural dynamic and aerodynamic models.

The ATW was a small-scale airplane wing comprised of an airfoil and wing tip boom as shown in figure 3. This wing was formulated based on a NACA-65A004 airfoil shape with a 3.28 aspect ratio. The wing had a span of 18 in. with root chord length of 13.2 in. and tip chord length of 8.7 in. The total area of this wing was 197 in². The wing tip boom was a 1-in. diameter hollow tube of 21.5 in. length. The total weight of the wing was 2.66 lb.

Ground vibration tests have been performed to determine the dynamic modal characteristics of the ATW (ref. 10). It is shown in table 3 that the first bending and torsion modes were at 13.76 and 20.76 Hz, respectively. Corresponding frequencies and mode shapes computed using MSC/NASTRAN (MSC.Software Corporation, Santa Ana, California, USA) (ref. 11) are also listed in table 3 and shown in figure 4.

The FE model has been tuned to match the experimental data, but still the frequency error of 9.9% is observed for the second mode. This amount of frequency error violates the 3% limit for the primary modes described in military specifications (refs. 12, 13). The 4% error in the total weight is also listed in table 3. Therefore, the FE model needs to be further updated for a more reliable flutter analysis. The original FE model used rigid body elements to connect the wing tip to the boom, which could produce the so-called “idealization error.” Therefore, we used scalar springs to replace rigid body elements so that stiffness could be adjusted in this area. Point masses and scalar springs are selected for the design variables to minimize the frequencies and total weight errors. Two runs have been performed to demonstrate the sensitivity of the optimization solution to the constraint equations: (1) \(J_{12} \) was used as the objective function and \(J_1 \) as a constraint equation; (2) \(J_{12} \) was used as the objective function and \(J_1, J_{11} \) and \(J_{13} \) as constraint equations. With 50 populations and 100 generations of genetic algorithm optimization parameters, the final frequencies and total weight for case 1 are listed in table 4. A summary of the center of gravity, moment of inertia, mass orthogonality, and modal assurance criteria (MAC) for the ATW for case 1 are shown in table 5. Table 6 shows the final frequencies and total weight for case 2; a summary of the center of gravity, moment of inertia, mass orthogonality, and MAC are shown in table 7. The optimization histories for the objective function of case 1 and case 2 are shown in figure 5 and figure 6 respectively. In case 1, there is a great reduction in the total weight and frequency errors but no improvement for the mass orthogonality. In case 2, total mass, mass orthogonality and frequencies are improved but not as much in case 1.

CONCLUSIONS

Simple and efficient model tuning capabilities based on a non-linear optimization problem are successfully integrated with the multidisciplinary design, analysis, and
optimization tool developed at the NASA Dryden Flight Research Center, Edwards, California. Instead of modifying the stiffness and mass matrices directly, we updated the structural parameters such that the mass properties, mass matrix, frequencies, and mode shapes were matched to the target data, maintaining some similarity with the actual structure. The computer program has been coded in such a way that each \(J_i \) thru \(J_{13} \) can be used as a constraint or objective function. When \(J_i \) is selected as the objective function, all or part of the \(J_k \) \((k \neq i)\) can be selected as a set of constraints. This gives the flexibility to achieve a particular optimization goal.

Two examples were used to demonstrate the application of this model updating process. These examples showed that the number of constraint equations that is adequate to be used in the optimization process depends on the complexity of the model. For a simple model, the number of constraint equations may not have much effect on the solution, but for a complex model this effect could be significant. In either case, the approach investigated in this work proved to be a robust method of improving the accuracy of structural dynamics finite element models.

TABLES

Table 1. Errors between the target and the initial configuration of the cantilever plate.

<table>
<thead>
<tr>
<th></th>
<th>Target</th>
<th>Initial</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.1</td>
<td>0.5</td>
<td>400.0</td>
</tr>
<tr>
<td>Mass density</td>
<td>0.000239</td>
<td>0.0005</td>
<td>109.2</td>
</tr>
<tr>
<td>Total mass</td>
<td>0.00239</td>
<td>0.025</td>
<td>946.0</td>
</tr>
<tr>
<td>CG</td>
<td>5.0, 5.0, 0.0</td>
<td>5.0, 5.0, 0.0</td>
<td>0</td>
</tr>
<tr>
<td>Ixx</td>
<td>0.0224</td>
<td>0.234</td>
<td>944.6</td>
</tr>
<tr>
<td>Iyy</td>
<td>0.0224</td>
<td>0.234</td>
<td></td>
</tr>
<tr>
<td>Izz</td>
<td>0.0448</td>
<td>0.468</td>
<td></td>
</tr>
<tr>
<td>Ixy, Iyz, Izx</td>
<td>0.0, 0.0, 0.0</td>
<td>0.0, 0.0, 0.0</td>
<td></td>
</tr>
<tr>
<td>Mode 1, Hz</td>
<td>33.27</td>
<td>114.84</td>
<td>245.2</td>
</tr>
<tr>
<td>Mode 2, Hz</td>
<td>77.84</td>
<td>265.00</td>
<td>240.4</td>
</tr>
<tr>
<td>Mode 3, Hz</td>
<td>187.91</td>
<td>650.70</td>
<td>246.3</td>
</tr>
<tr>
<td>Modal assurance criteria</td>
<td>0.999</td>
<td>0.999</td>
<td>0.996</td>
</tr>
</tbody>
</table>
Table 2. Errors between the target and the final configuration of the cantilever plate.

<table>
<thead>
<tr>
<th></th>
<th>Target</th>
<th>Final</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.1</td>
<td>0.0977</td>
<td>-2.3</td>
</tr>
<tr>
<td>Mass density</td>
<td>0.000239</td>
<td>0.000236</td>
<td>-1.2</td>
</tr>
<tr>
<td>Total mass</td>
<td>0.00239</td>
<td>0.00231</td>
<td>-3.3</td>
</tr>
<tr>
<td>CG</td>
<td>5.0, 5.0, 0.0</td>
<td>5.0, 5.0, 0.0</td>
<td>0</td>
</tr>
<tr>
<td>Ixx</td>
<td>0.0224</td>
<td>0.02162</td>
<td>-3.5</td>
</tr>
<tr>
<td>Iyy</td>
<td>0.0224</td>
<td>0.02162</td>
<td></td>
</tr>
<tr>
<td>Izz</td>
<td>0.0448</td>
<td>0.04320</td>
<td></td>
</tr>
<tr>
<td>Ixy, Iyz, Izx</td>
<td>0.0, 0.0, 0.0</td>
<td>0.0, 0.0, 0.0</td>
<td></td>
</tr>
<tr>
<td>Mode 1, Hz</td>
<td>33.27</td>
<td>32.74</td>
<td>-1.6</td>
</tr>
<tr>
<td>Mode 2, Hz</td>
<td>77.84</td>
<td>77.01</td>
<td>-1.1</td>
</tr>
<tr>
<td>Mode 3, Hz</td>
<td>187.91</td>
<td>186.54</td>
<td>-0.7</td>
</tr>
<tr>
<td>Modal assurance criteria</td>
<td>0.999</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Table 3. Frequencies and total weight of the aerostructures test wing before optimization.

<table>
<thead>
<tr>
<th></th>
<th>GVT, Hz</th>
<th>NASTRAN, Hz (Guyan/Full)</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>13.763</td>
<td>13.354/13.354</td>
<td>-2.97/-2.97</td>
</tr>
<tr>
<td>Mode 2</td>
<td>20.763</td>
<td>22.819/22.819</td>
<td>9.90/9.90</td>
</tr>
<tr>
<td>Mode 3</td>
<td>77.833</td>
<td>79.062/78.771</td>
<td>1.58/1.21</td>
</tr>
<tr>
<td>Total weight, lb</td>
<td>2.66</td>
<td>2.77</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Table 4. Frequencies and total weight of the aerostructures test wing after optimization (without \(J_{11} \) constraint).

<table>
<thead>
<tr>
<th></th>
<th>GVT, Hz</th>
<th>NASTRAN, Hz (Guyan/Full)</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>13.763</td>
<td>13.753/13.753</td>
<td>-0.07/-0.07</td>
</tr>
<tr>
<td>Mode 2</td>
<td>20.763</td>
<td>20.764/20.763</td>
<td>0.00/0.00</td>
</tr>
<tr>
<td>Mode 3</td>
<td>77.833</td>
<td>77.817/77.842</td>
<td>-0.02/-0.45</td>
</tr>
<tr>
<td>Total weight, lb</td>
<td>2.66</td>
<td>2.67</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Table 5. Summary of center of gravity, moment of inertia, mass orthogonality, and modal assurance criteria for the aerostructures test wing before and after optimization (without J_{11} constraint).

<table>
<thead>
<tr>
<th></th>
<th>Before optimization</th>
<th>After optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG (X, Y, Z)</td>
<td>12.94, 9.16, 0.0</td>
<td>12.88, 8.8, 0.0</td>
</tr>
<tr>
<td>Ixx</td>
<td>161.22</td>
<td>152.06</td>
</tr>
<tr>
<td>Iyy</td>
<td>113.08</td>
<td>112.83</td>
</tr>
<tr>
<td>Izz</td>
<td>268.20</td>
<td>258.79</td>
</tr>
<tr>
<td>Ixy</td>
<td>95.27</td>
<td>93.75</td>
</tr>
<tr>
<td>Ixz</td>
<td>0.011</td>
<td>0.00996</td>
</tr>
<tr>
<td>Iyz</td>
<td>-0.028</td>
<td>-0.0349</td>
</tr>
<tr>
<td>M11</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>M12</td>
<td>0.089</td>
<td>0.157</td>
</tr>
<tr>
<td>M13</td>
<td>0.177</td>
<td>0.148</td>
</tr>
<tr>
<td>M22</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>M23</td>
<td>0.093</td>
<td>0.109</td>
</tr>
<tr>
<td>M33</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MAC</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Table 6. Frequencies and total weight of the aerostructures test wing after optimization (with J_{11} constraint).

<table>
<thead>
<tr>
<th></th>
<th>GVT, Hz</th>
<th>NASTRAN, Hz (Guyan/Full)</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 1</td>
<td>13.763</td>
<td>13.406/13.405</td>
<td>-2.59/-2.60</td>
</tr>
<tr>
<td>Mode 2</td>
<td>20.763</td>
<td>21.014/21.013</td>
<td>1.21/1.2</td>
</tr>
<tr>
<td>Mode 3</td>
<td>77.833</td>
<td>77.871/77.502</td>
<td>0.04/-0.40</td>
</tr>
<tr>
<td>Total weight, lb</td>
<td>2.66</td>
<td>2.698</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Table 7. Summary of center of gravity, moment of inertia, mass orthogonality, and modal assurance criteria for the aerostructures test wing before and after optimization (with J_{11} constraint).

<table>
<thead>
<tr>
<th></th>
<th>Before optimization</th>
<th>After optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG (X, Y, Z)</td>
<td>12.94, 9.16, 0.0</td>
<td>12.72, 8.91, 0.0</td>
</tr>
<tr>
<td>Ixx</td>
<td>161.22</td>
<td>154.78</td>
</tr>
<tr>
<td>Iyy</td>
<td>113.08</td>
<td>102.57</td>
</tr>
<tr>
<td>Izz</td>
<td>268.20</td>
<td>251.26</td>
</tr>
<tr>
<td>Ixy</td>
<td>95.27</td>
<td>89.45</td>
</tr>
<tr>
<td>Ixz</td>
<td>0.011</td>
<td>0.0068</td>
</tr>
<tr>
<td>Iyz</td>
<td>-0.028</td>
<td>-0.033</td>
</tr>
<tr>
<td>M11</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>M12</td>
<td>0.089</td>
<td>0.0297</td>
</tr>
<tr>
<td>M13</td>
<td>0.177</td>
<td>0.119</td>
</tr>
<tr>
<td>M22</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>M23</td>
<td>0.093</td>
<td>0.028</td>
</tr>
<tr>
<td>M33</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MAC</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Figure 1. The cantilever plate.
Figure 2. The objective function history of the cantilever plate.

Figure 3. The aerostructures test wing.
Figure 4. The finite element model and mode shapes.

(a). The MSC/NASTRAN model.
(b). Mode 1: 13.354 Hz.
(c). Mode 2: 22.819 Hz.
(d). Mode 3: 78.771 Hz.
Figure 5. The objective function history of the aerostructures test wing without the J_{11} constraint.
Figure 6. The objective function history of the aerostructures test wing with the J_{11} constraint.
REFERENCES

ABSTRACT

Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.

SUBJECT TERMS

Analysis and optimization, Finite element model tuning, Genetic optimizer, Ground vibration test data, Multidisciplinary design, Measured mass properties