Vertical Isolation for Photodiodes in CMOS Imagers

Diffusion cross-talk would be reduced substantially.

In a proposed improvement in complementary metal oxide/semiconductor (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

Ideally, the spatial resolution of an imager should be limited by the geometric pixel size. However, in most practical image detectors, resolutions are limited, not by geometric pixel sizes, but by cross-talk. (As used here, “cross-talk” denotes the response of a pixel to light focused on an adjacent pixel.) Cross-talk degrades spatial resolution of an imager, reduces overall sensitivity, compromises color fidelity, and leads to additional noise in the image after color correction. Diffusion cross-talk occurs where photogenerated charge carriers can move to neighboring charge-accumulation sites — in particular, where junction diodes in adjacent pixels have insufficient depletion widths.

The left side of the figure presents a schematic cross section of a typical conventional CMOS imager pixel containing a junction diode connected to the source of a reset MOSFET. The junction diode is formed between the n well and the p epitaxial layer (or p substrate). The n well is connected to the source of the reset MOSFET through an n+ implant. The reset MOSFET and an associate source-follower MOSFET are n-type and are placed inside a p well. For reasons too complex to present in this article, the depletion width is too small to prevent lateral diffusion of photo-induced charge carriers in the undepleted (field-free) epitaxial region. In the absence of a guiding electric field, photoelectrons generated in the epitaxial layer substrate diffuse omnidirectionally between pixels, thereby causing cross-talk.

The maximum supply potential in a CMOS process is between 3 and 5 V. When potential drops are taken into account, the reverse bias across the diode is between 2 and 3 V. At these reverse biases, the p-n junction depletion width is too small to prevent diffusion cross-talk, especially for longer wavelength light. In principle, the depletion width could be increased significantly by applying a large reverse bias (e.g., 50 V) to the p epitaxial layer or substrate. However, because of (1) the electrical connection between the p well and the p epitaxial layer or substrate and (2) a requirement to keep at the most between 3 and 5 V across the CMOS devices, it is not possible to apply such a large reverse bias in this device structure. This prompts the proposed improvement in device structure.

A CMOS imager pixel as proposed, depicted on the right side of the figure, would include a deep n well and a deep p well in addition to the conventional n and p wells. The photodiode would be formed by the deep n well and the p epitaxial layer or substrate. The anode end (n end) of the diode would be connected to the n+ source.
One receiver would have the functionality of multiple traditional heterodyne microwave receivers.

Wide-Band Microwave Receivers Using Photonic Processing

NASA's Jet Propulsion Laboratory, Pasadena, California

In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, “wide-band microwave receivers” refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest.

In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO$_3$. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances.

The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both wide-band and narrow-band signal processing. Thus, one compact receiver of this type would afford the functionality that, hitherto, could have been obtained only by use of multiple heterodyne microwave receivers.

This work was done by Andrey M. Atsko, Lute Maleki, Vladimir Iltchenko, Nan Yu, Dmitry Strekalov, and Anatoliy Savchenkov of Caltech for NASA's Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov. NPO-45313