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Application of an Elongated Kelvin 
Model to Space Shuttle Foams

Spray-on foam insulation is applied to the exterior of the Space Shuttle’s External Tank to limit 
propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell 
polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are 
BX-265 and NCFI24-124.  Since the catastrophic loss of the Space Shuttle Columbia, numerous 
studies have been conducted to mitigate the likelihood and the severity of foam shedding during the 
Shuttle’s ascent to space.  Due to the foaming and rising process, the foam microstructures are 
elongated in the rise direction.  As a result, these two foams exhibit a non-isotropic mechanical 
behavior. In this paper, a detailed microstructural characterization of the two foams is presented. 
The key features of the foam cells are summarized and the average cell dimensions in the two 
foams are compared. Experimental studies to measure the room temperature mechanical response 
of the two foams in the two principal material directions (parallel to the rise and perpendicular to the 
rise) are also reported.  The measured elastic modulus, proportional limit stress, ultimate tensile 
stress and the Poisson’s ratios for the two foams are compared.  The generalized elongated Kelvin 
foam model previously developed by the authors is reviewed and the equations which result from 
this model are presented. The resulting equations show that the ratio of the elastic modulus in the 
rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the 
two material directions is only a function of the microstructural dimensions.  Using the measured 
microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and 
Poisson’s ratios are predicted for both foams. The predicted tensile strength ratio is in close 
agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison 
between the predicted Poisson’s ratios and the measured values is not as favorable. 
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Spray-on Foam Insulation is used on the 
External Tank to reduce propellant boil-off and 
prevent ice formation on the external surfaces.

Acreage foam is NCFI24-124 
(Machine sprayed)

Close-outs are hand sprayed 
BX-265 or PDL-1034
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Typical Flight Loads on ET Foam Applications

Aerodynamic 
Heating

Aerodynamic 
Shear

Cryogenic 
Temperatures
(-423F/-297F)

Substrate Flexure and 
Membrane Forces

Tank Wall
Foam Insulation
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Figure 3.5 – Cell Geometry, NCFI24-124 

• 97% air; γ = 0.03
• polymeric cell walls
• due to its microstructure, material is anisotropic (possess 
different material properties in different directions)

Foam Microstructure

Parallel-to-rise 
direction

Perpendicular-to-rise 
direction
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BX-265

NCFI24-124

The foam microstructure can be approximated by an elongated 
tetrakaidecahedron (a fourteen-sided polyhedron)

Average number of 
faces per cell: 12.4*

Average number of 
faces per cell: 13.7*

_________________
* Wright L. S. and Lerch B. A., 2005. Characterization of space shuttle insulative materials, NASA/TM-2005-213596.

8 hexagonal faces
4 diamond-shaped faces
2 square faces
36 edges
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Equi-axial Unit 
Cell Models

Elongated Unit 
Cell Models

Some Significant Previous Studies

Thomson, W. (Lord Kelvin), 1887. On the division of space with minimum partitional
area. Phil. Mag. 24, 503-514.

William Thomson (Lord Kelvin) determined that the tetrakaidecahedron (with slightly 
curved faces) was nature’s preferred shape for soap bubbles and other foams since it is 
the shape that minimizes the surface area per unit volume and packs to fill space.

The tetrakaidecahedron foam model is commonly referred to as the Kelvin foam model after:
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The size and shape of an elongated tetrakaidecahedron are uniquely defined 
by specifying three independent dimensions.
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~20 μm

Simplifying Assumptions:
1) The structural rigidity of the cell faces is assumed to contribute little to the foam 
mechanical behavior.
2) The mass of the cell faces are only a small fraction of the total solid mass.

Face thickness in the middle of the faces
~ 0.1 μm to 1.0 μm

The majority of the solid mass resides in the cell edges (where the faces 
come together).
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The mechanical behavior can be accurately modeled by considering the deformation of 
the cell edges only. The cell edges are assumed to act like struts possessing axial and 
flexural rigidity.
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Cell edge cross-sections are approximated as three-cusp hypocycloids (Plateau Borders)
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Thus, four microstructural dimensions are required: 

3 to define the unit cell + 1 to specify the edge cross-section dimension
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Careful consideration of the unit cell deformation leads to convenient algebraic 
equations for the Young’s modulus, Poisson’s ratio and strengths in the principal 
material directions.

based on peak stress in any edge 
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The ratio of the rise direction modulus to the normal-to-rise direction modulus 
and the ratio of the strengths are indicative of the amount of elongation.
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Only a function of the unit cell dimensions and 
the edge cross-section dimension.



14

National Aeronautics and Space Administration

www.nasa.gov

Microstructural Characterization
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Mechanical Testing
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Mechanical Testing

Poisson’s Ratios
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AQQ = BQQ =

BA QQ >

and the shape parameter

The shape is defined by the aspect ratio
D
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Previous research studies using the elongated Kelvin model set an artificial 
restriction on the unit cell shape,

This reduces the number of unit cell dimensions 
required to exercise the theory and apply the equations 
by one. The unit cell shape is now described by 
specifying only two dimensions.

However, this restriction on the unit cell geometry seems arbitrary and it reduces the 
generality of the model and limits its applicability to a narrower range of foams. 

θcos2/ =Lb

b2

D

which is equivalent to assuming that bD 22=

2=Q
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Micro-mechanics
Model
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Summary and Conclusions

• Model was successful in predicting the measured strength ratios and edge cross-section 
radii using measured average cell height, cell width, relative density and stiffness 
ratios as input.

• Prediction of Poisson’s ratios was not as successful.
• Shuttle foams have a microstructure such that , so a micromechanics model 

derived from a general elongated Kelvin unit cell is needed.
• Future work should include performing finite element analysis of BX-265 and 

NCFI24-124 unit cells with faces included and predict Poisson’s ratios. 

2≠Q
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Micro-mechanics
Model

Finite Element Analysis

Micro-mechanics
Model

Foam Elastic Constants 

Average Foam Stresses

Description of 
Foam Microstructure

Edge (Strut) Stresses 
and Failure Initiation
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Intertank Flanges

Manual Spray Close-outs of BX-265

Protrusion Air Load (PAL) Ramp

Redesign eliminated the LOx
and LH2 PAL Ramps
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Bipod Fitting and 
Ramp Closeout

Current design

BX-265
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Ice Frost Ramps

Cover the pressurization line and cable tray 
support fittings to prevent ice formation.

PDL-1034
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Structural Analysis of the Foam Applications under launch loads and environments
is performed by Finite Element Analysis

Finite element analysis treats the foam material as a homogeneous, temperature dependant 
and orthotropic material
• elastic constants and strengths obtained during material characterization testing
• the effect of a varying microstructure on the foam structural integrity is neglected

Analyses are not used for flight qualification, but as a tool to study possible foam 
shedding mechanisms and to guide proposed design changes.


