ABSTRACT
NASA’s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA’s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design.

To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA’s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanical performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA’s APNASA codes.

Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.
TBCC Fan Stage Operability and Performance

Hypersonic TBCC propulsion - Over /under Configuration

Turbine Based propulsion
Mach 0-4+

APNASA Axisymmetric GRID 356 X 85 X 55
37 Fan LE
97 Fan TE
129 OGV LE
199 OGV TE
278 STRUT LE
335 STRUT TE
219 FLOW
Outer Bypass Bleed Region

NASA Fundamental Aeronautics Program
2007 Annual Meeting

October 31st 2007

Dr. Kenneth L. Suder
API Propulsion Technology Integration
Hypersonics Project

216-433-5899
Kenneth.L.Suder@nasa.gov

Fan Rotor Blisk
Outlet Guide Vane

Test Facility
ACKNOWLEDGEMENTS

- The TBCC Fan Stage Design and initial testing was a collaborative NASA / General Electric (GE) effort. The following have made major contributions to the work presented herein:

<table>
<thead>
<tr>
<th>Mechanical Design & Aeromechanics Analysis</th>
<th>Aerodynamic Design & Aerodynamics Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Mark Mielke, GE</td>
<td>➢ Peter Wood, GE</td>
</tr>
<tr>
<td>➢ Doug Washburn, GE</td>
<td>➢ Dave Clark, GE</td>
</tr>
<tr>
<td>➢ Scott Thorp, NASA</td>
<td>➢ Hyoun-Woo Shin, GE</td>
</tr>
<tr>
<td>➢ John Jones, NASA Contractor</td>
<td>➢ Sue Prahst, NASA Contractor</td>
</tr>
<tr>
<td>➢ Greg Lung, NASA Contractor</td>
<td>➢ Aamir Shabbir, Univ of Toledo</td>
</tr>
<tr>
<td></td>
<td>➢ Ken Suder, NASA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W8 Facility Installation & Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Tom Jett, NASA</td>
</tr>
<tr>
<td>➢ Rick Brokopp, NASA</td>
</tr>
<tr>
<td>➢ Ashlie Flegel, NASA Contractor</td>
</tr>
<tr>
<td>➢ John Dearmon, NASA Contractor</td>
</tr>
<tr>
<td>➢ Helmi-Abulaban, NASA Contractor</td>
</tr>
<tr>
<td>➢ Bruce Wright, NASA</td>
</tr>
</tbody>
</table>
TBCC Fan Stage Operability and Performance

- **Background**
 - Relevancy /Benefits of TBCC Propulsion
 - TBCC Fan Technology Challenges
 - Overview of NASA TBCC Plan

- **Objectives / Approach**

- **Fan Stage Design**

- **Test Facility / Instrumentation**

- **Results**
 - Aeromechanic Checkout
 - Overall Performance and Comparison w/ CFD
 - Sampling of Data

- **Summary / Concluding Remarks**
High effective specific impulse, I_{eff}

Horizontal takeoff and landing enhances launch, flight and ground operability
- Benign ascent abort/engine out

Large structural mass fraction providing large margins
- Design for life
- Design for safety

Reduced sensitivity to weight growth
- Reduced design/development risk
- Reduced user constraints

High payload fraction

TBCC BENEFITS:
- Quick Turn Around Time (Aircraft Like Operations)
- Re-useable > 1000 missions
- Versatile Usage + Launch & Landing Sites
- Low Maintenance, High Durability, Performance Margin

\[I_{sp} = \text{Thrust/Pound per second of propellant (fuel) flow rate} \]
Two Enabling Technologies for Reusable Hypersonic Applications

High Mach Turbine Tech Challenges:
- Increase Maximum Mach from 2+ → 4+
- Provide thrust margin over entire range (0<M<4+)
 - Light Weight High Temperature Materials
 - Thermal Management
 - High Temperature Bearings and Seals
 - Highly Loaded Turbomachinery
 - Propulsion/Airframe Integration
 - Cocooning and Relight

Scramjet Tech Challenges:
- Reduce Scramjet Ignition Mach Speed (M5 → M3)
- Provide transition speed margin (3<M<4)
 - Variable Geometry
 - Advanced Combustion Schemes
 - Light Weight High Temperature Materials
 - Thermal Management
 - High Temperature Seals
 - Propulsion/Airframe Integration

Required TURBINE Improvements over SOA:
- ✓ 2-3X Thrust / Weight
- ✓ 4-8X Durability – MTBO
- ✓ 20-25% Reduction in Fuel Burn
- ✓ Increased Mach Capability
- ✓ Improved Range
- ✓ Conventional Fuel / Lubricants
Turbine Based Combined Cycle Engine (CCE)
FAP 2007-11 Propulsion Roadmap - Integrates In-House / OGA's / NRA's

<table>
<thead>
<tr>
<th>Milestones</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYP.03.02.01.m01: Improve modeling and codes for turbulent reacting flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYP.03.02.02.m07: Demonstrate adequate inlet mode transition performance and stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYP.03.02.m08: Document assessment of uncertainty in SOA design and analysis tools for Mach>4 Turbine Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYP.03.03.04.m04: Interactive combined cycle propulsion system performance predictive tool (TBCC propulsion)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Mach Ram/Scram Engine Technology</td>
<td>DCR Mode Transition</td>
<td></td>
<td></td>
<td>Low Mach flame stability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Integrated Inlet Technology</td>
<td>Small scale test</td>
<td>10x10 Large scale characterization</td>
<td></td>
<td></td>
<td>10x10 Transition w/ controls</td>
<td></td>
</tr>
<tr>
<td>High Mach Turbine Engine Technology</td>
<td>High Mach fan operability</td>
<td>SLS Ground Test</td>
<td>Inlet Distortion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBCC / CCE Integration & Mode Transition Technology</td>
<td>10x10 Turbine Engine Transition & High Altitude Re-light</td>
<td></td>
<td></td>
<td>10x10 Combined Cycle Engine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TBCC Fan Stage is Integral to CCE effort and is used to assess impact of TBCC inlet distortion on fan stage performance and operability.
Mach 4 + Capable Variable Cycle Engine Operation

Variable Cycle Engine maximizes thrust over broad operating range:
- Conventional turbojet at low BPR, low Mach
- Converts to Ram burner at high BPR, high Mach
- Enables Mach 4+ using existing materials

High Mach Turbine Engines Challenges Augmented by Wider Operating Range and excess Temperatures relative to SOA Engines
Objective of Fan Stage Research:
Verify SOA design and analysis tools. Characterize a TBCC engine fan stage aerodynamic and aeromechanic performance and stability limits over a wide operating range including power-on and hypersonic-unique windmill operation.

SOA Design & Analysis Tools used to Enable SLS to Mach 4 Range of Operation
(10x variation in bypass ratio, full power to windmill operation, variations: 8x in rotor speed, 8x inlet pressure, 3x inlet temperature)

Fan Blisk - *PR Exceeds SOA*
Approach:

- Perform aerodynamic and aero-mechanical scaling of a relevant SOA Mach 4 turbine engine fan stage and incorporate facility interface hardware for sub-scale testing in the NASA high speed compressor facility.
- Predict performance and operability prior to test using SOA analysis tools.
- Map fan stage performance and measure stall line stability boundary over wide range of engine operation and compare to pre-test predictions.
- Measure Fan Aeromechanics: identify vibration and flutter boundaries that adversely impact engine operation. Assess ability of SOA tools to predict flutter.
- Investigate inlet / engine interactions by incorporating inlet distortions and quantify the SOA tool(s) and their ability to predict performance and operability (with distorted inlet inflow).
- Utilize test article to understand physics and improve models required to predict off-design performance and operability.
Fan Stage Design

Fan Stage Design Parameters

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Rotor Tip Speed</td>
<td>1660 ft/s</td>
</tr>
<tr>
<td>Fan Rotor Design Speed</td>
<td>17280 RPM</td>
</tr>
<tr>
<td>Radius Ratio at LE</td>
<td>0.43</td>
</tr>
<tr>
<td>Average Aspect Ratio</td>
<td>1.12</td>
</tr>
<tr>
<td>Average Solidity</td>
<td>2.2</td>
</tr>
<tr>
<td>Specific Flow</td>
<td>38.0</td>
</tr>
<tr>
<td>Design Flow Rate</td>
<td>85.2 lbm/s</td>
</tr>
<tr>
<td>Stage Pressure Ratio</td>
<td>2.47</td>
</tr>
<tr>
<td>Stage Adiabatic Efficiency</td>
<td>0.85</td>
</tr>
<tr>
<td>Stall Margin</td>
<td>20%</td>
</tr>
</tbody>
</table>

Design Features:
- Liner inserts to evaluate sensitivity to clearance, endwall flow control such as casing treatments.
- Independent throttle valves for bypass and core flow paths to assess sensitivity to bypass ratio.
- Capability to perform parametrics on 1) the OGV setting angle, 2) inlet boundary layer thickness, and 3) inlet distortion.
- Steady state conventional as well as high response instrumentation to assess ability of SOA tools to predict performance and operability.

Fan Stage = Rotor (25) + OGV (48) + Strut (6)

Bypass Flow

Core Flow

INLET FLOW

CL
CFD tools utilized in Fan Stage Design to Accommodate Large Operating Range Requirements

Meridional views of the axial velocity distribution at 5%, 50%, and 95% OGV pitch for the final OGV design.

Final OGV Design Balances Competing Requirements over the Entire Flight Regime
Performance at Take-off
Pass the Flow with minimal losses at High Mach Flight
Mechanical:
- Shaft power, max: 7000 HP (electric motor)
- Rotational speed, max: 21240 RPM
 - 5.9:1 Gear Ratio
- Approximately 4:1 Pressure Ratio capability
 - Exit temperature limit, 400F
- Air flow, max: 100 lbm/second
- Full Bi-directional rotation capability
- 20 to 22 inch diameter face
- Common shaft attachment scheme with W-7 Facility & the 9X15 LSWT

Rig Health Monitoring System:
- 3500 Bentley Nevada rig health system
 - data acquisition/analysis/archival
 - Proximity sensors
 - Accelerometers
 - 100 channel slip ring

Steady State Instrumentation (ESCORT D):
- 256 channels of analog data inputs.
- 320 pressure measurements
- 16 axis probe actuator control system

Unique Facility Capabilities Utilized to Obtain Fan Windmilling DATA
Fan Stage Test Section Schematic

Following Slides will zoom into test section to show instrumentation.
Instrumentation

- Inlet Pt and Tt Rakes
 - Define fan inlet profile
 - 5 circumferential locations
 - 8 immersions

- Inlet Boundary Rake, Pt
 - Define inlet boundary layer
 - 1 circumferential location
 - 6 immersions

- Probe survey location
- Kulite locations for rotating stall
- 8 circumferential locations

Variable Inlet Boundary layer bleed

Flow from Plenum

Inlet Distortion Screen
 - 360 Deg rotation
Instrumentation

- Rotor Tip Statics - Steady / Unsteady
 - 20 axial locations for each
 - Measure rotor endwall shock structure / tip leakage vortex

- OGV LE Pt (3) & Tt (3)
 - Rotor only performance
 - Calculate OGV loss

- OGV Exit Rakes, Pt & Tt
 - Calculate stage performance
 - 8 circumferential locations, verniered across an OGV passage
 - 7 immersions

- NASA radial & circumferential traverse
 - OGV Exit Rakes, Pt & Tt
 - Calculate stage performance
 - 8 circumferential locations, verniered across an OGV passage
 - 7 immersions

- NASA radial traverse
 - OGV LE Pt (3) & Tt (3)
 - Rotor only performance
 - Calculate OGV loss
 - 6 circumferential locations
 - 7 immersions
Instrumentation

- Fan Stage Exit BL Rakes
 - Calculate boundary layer thickness

- Bypass Duct Exit Rakes, Pt and Tt
 - Calculate bypass duct mass flow
 - 2 circumferential locations
 - 5 immersions

- Core Duct Exit Rakes, Pt and Tt
 - Calculate core duct mass flow
 - 2 circumferential locations
 - 5 immersions

- Strut Core Flow Rakes, Pt and Tt
 - 1 circumferential locations
 - 5 immersions

- NASA Core Exit Pt & Tt sensors
 - Calculate core mass flow
 - 1 circumferential location
 - 5 immersions

- NASA Bypass Exit Pt & Tt sensors
 - Calculate bypass duct mass flow
 - 2 circumferential locations
 - 5 immersions
Aeromechanic Instrumentation:

- Dynamic Strain Gages (Rotor :21; OGV: 20; Inlet Rakes :12)
- Light Probes at Rotor Leading Edge (10) & Trailing Edge (10)
- Dynamic Tip Clearance Measurements (4 @ 50% chord)

Aeromechanic Results:

- Speed Avoidance Zones for the Smooth Wall Clean Inlet Flow Condition:
 1. Near Stall from 51-67% Speed due to Non-synchronous vibration /excitation of the Rotor's First Torsion mode (1T NSV)
 2. 100% Speed Near Stall (Hum - not identified)
Pre-Test CFD Compared to DATA

Pre-Test CFD does NOT predict Range of Operation @ High Speed

Fan Stage Performance: Smooth Wall Configuration

Aero Design Point

Normalized Inlet Mass Flow

Total Pressure Ratio RTA Fan
Efficiency Discrepancy Between Pre-Test CFD and Rake Measurements
OGV pressure and suction surface static measurements at 10%, 15%, 25% and 45% span - Results @ 25%Span, 95% rotor speed.

OGV surface statics indicate blade incidence, blade loading, & separations.
Opening the OGV increases performance and mass flow at part speed conditions which results in increase thrust during TBCC mode transition.
High Response Rotor Tip Static Pressure Measurements (Kulites) Characterize Rotor Endwall Shock / Leakage Vortex Interaction/s.
Concluding Remarks

- A SOA Mach 4 turbine engine fan stage was designed and scaled (0.57 linear) for testing in the NASA W8 high speed compressor facility.
- CFD was utilized in the design process and simulations were performed to predict performance and operability prior to test.
- Aerodynamic fan stage performance characteristics were acquired at 15%, 36%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, and 100% of design rotor speed. Measurements are being compared to Pre-test CFD. Results to date include:
 - Good agreement at the design point
 - Discrepancy in efficiency values over the speed range
 - Pre-Test CFD does NOT predict Range of Operation @ High Speed
- Future Efforts include in depth analysis of CFD and its comparison to measurement, specifically:
 - Rotor endwall flow structure - using steady and high response pressure measurements.
 - OGV blade loading using blade surface static measurements at 10%, 15%, 25% and 45% span.
 - Stage performance based on detailed aerodynamic probe surveys (radial and circumferential).
- Additional fan stage testing to assess sensitivity (both CFD and measurement) of performance and operability to:
 - Endwall tip clearance
 - Endwall flow control including casing treatment
 - Inlet flow distortions (radial, circumferential, and TBCC inlet)