Beyond Einstein: From the Big Bang to Black Holes

LISA Technology Development at NASA/GSFC

J.I. Thorpe

37th COSPAR Scientific Assembly
Montréal, Québec
July 16th, 2008
Outline

Laser Frequency Stabilization
- Optical Cavities with frequency tuning
- Molecular Iodine

Stable Environments
- Stable test-bed for formation flying
- Fused-silica fibers for torsion pendula

Surface Effects
- Kelvin Probe

Laser Study
Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine

Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula

Surface Effects
 - Kelvin Probe

Laser Study
Laser frequency noise is a major potential noise source for LISA

- Three-stage system (two active one passive) to achieve overall suppression of $\sim 10^{13}$
- Running pre-stabilization and arm-locking in series reduces gain (bandwidth) requirements on arm-locking.
- Serial arrangement requires frequency-tunable pre-stabilization
Offset Sideband Locking

Concept: Lock phase-modulation sidebands to cavity resonance and tune central frequency by adjusting modulation frequency.

Normal Pound-Drever-Hall Lock

Sideband Lock

Thorpe, Numata, Livas
• Standard PDH and sideband locking have identical noise performance
• Common technical noises limit both systems.
• Adding modulation tone does not disturb the broadband noise floor.

Thorpe, Numata, Livas
Combining with Arm-Locking

- Simulate 1-s long arm using EPD technique
- Pre-stabilize laser using offset sideband locking technique
- Arm-Lock using sideband offset as frequency actuator

Thorpe, Mitryk, Wand
Arm-Locking Results

- Free-running and pre-stabilized lasers meet LISA requirements in band.
- Arm-locking system behaves as predicted. (noise spikes at n/τ frequencies)
- Progress towards demonstration of 2/3 of LISA frequency mitigation plan.
Spectroscopic reference provides Absolute reference frequency

Laboratory study of frequency stability using two independent Nd:YAG lasers stabilized to hyperfine transition in I_2

Slightly worse than cavities for $f > 1$ mHz

Better performance below 0.1 mHz
Outline

Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine

Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula

Surface Effects
 - Kelvin Probe

Laser Study
Testing LISA’s inter-spacecraft interferometer on stable platforms

- 2 optical benches with 2 independent pre-stabilized lasers
 - Silicate bonded optical bench, heterodyne interferometer with phasemeter
- 2 degree-of-freedom active control
 - Intended to kill unwanted ground & thermal motion.
 - PZT-based hexapod provides actuation capability.
 - Noise suppression factor: 100~500
 - Performance limited by mechanical coupling from uncontrolled other 4 DoFs.

Displacement Noise [m/rtHz]

J.I. Thorpe
37th COSPAR Scientific Assembly – Montréal, Québec
For lowering fundamental noise limit of torsion pendulum

- **Our methodology**
 - Fiber puller, coater, pendulum for loss measurement
 - Thin coating technique development

Significant advantages confirmed

- **LISA requirement should be reachable with silica**
 - Test started in LISA torsion pendula in Univ. of Trento & Univ. of Washington

<table>
<thead>
<tr>
<th>Suspended mass [kg]</th>
<th>Acceleration Noise @ 1mHz [m/s^2/rtHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>10^{-11}</td>
</tr>
<tr>
<td>0.01</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>0.1</td>
<td>10^{-13}</td>
</tr>
<tr>
<td>1</td>
<td>10^{-14}</td>
</tr>
<tr>
<td>10</td>
<td>10^{-15}</td>
</tr>
</tbody>
</table>

- **7um**
- **14um**
- **22um**

Fiber puller

Fiber coater

Numata & Camp

J.I. Thorpe
Outline

Laser Frequency Stabilization
 - Optical Cavities with frequency tuning
 - Molecular Iodine

Stable Environments
 - Stable test-bed for formation flying
 - Fused-silica fibers for torsion pendula

Surface Effects
 - Kelvin Probe

Laser Study
 KP measurements of LISA gold surface

- Vibrating probe induces current proportional to surface potential
- KP limited by ADC quantization noise (recently upgraded)
- Excess low frequency voltage noise of gold surface measured with KP
- Magnitude barely OK for LISA, but cause unknown
- LISA Advantages for patch-effect problem
 - Gold coatings are non-reactive
 - Test mass kept at room temperature
Outline

Laser Frequency Stabilization
- Optical Cavities with frequency tuning
- Molecular Iodine

Stable Environments
- Stable test-bed for formation flying
- Fused-silica fibers for torsion pendula

Surface Effects
- Kelvin Probe

Laser Study
LGS Cost/Design Study of LISA laser

Testing of pump combiner

- optical characterization (insertion loss and PER stability) from 5 - 70 C
- thermal screening under high power in vacuum
- temperature cycling in air

J. Camp
Contributors

Jordan Camp
Volker Leonhart
Jeff Livas
Shawn Mitryk (GSFC/UF)
Kenji Numata
Ira Thorpe
Vinzenz Wand (UF)
Backup Slides
Three Flavors of Sideband Locking

Single Sideband (SSB)

- Simplest to implement
- Some noise coupling due to asymmetry

Dual Sideband (DSB)

- Restores PDH symmetry
- Complex modulation pattern

Electronic Sideband (ESB)

- Simple, symmetric modulation pattern
- Requires phase modulation capability on LO

\[\Omega \]

\[\Omega_1 \]

\[\Omega_2 \]

PM

EOM

EOM1

EOM2

\[\omega_c + \Omega \]

\[\omega_c - \Omega \]

\[\omega_c + \Omega_1 + \Omega_2 \]

\[\omega_c + \Omega_1 - \Omega_2 \]

\[\omega_c + \Omega_1 \]

\[\omega_c + \Omega_2 \]
Fundamental Noise
- Shot noise
- Cavity thermal noise

Technical Noise
- Temperature Fluctuations
- Servo Noise
- Photoreceiver noise
- RIN
 - via RFAM
 - via absorption
- Vibration Noise/Acoustic
- Pointing
- ???

Diagram:
- The graph shows the spectral density $(S_{y}(f))^{1/2}$ plotted against Fourier frequency (Hz). The graph includes different noise components such as measured, thermal noise, shot (PDH), shot (SB), cav. temp, servo, RIN, and PR.
• Measured noise suppression matches expectations
• ~40dB at 100mHz