Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

John C. DeLaat and Daniel E. Paxson

Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.
Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

John C. DeLaat and Daniel E. Paxson

Controls and Dynamics Branch
NASA Glenn Research Center
Cleveland, Ohio

Fundamental Aeronautics Program Annual Meeting
7-9 Oct 2008
Atlanta, GA
Acknowledgements

- Dr. Changley Wey – NASA Test Engineer
- Operations and Testing staff – NASA Test Cell CE5
- Propulsion 21 Program – John Rohde, Emissions Project Manager
- Fundamental Aeronautics Program – Dan Bulzan, SUP - High Altitude Emissions API
Outline

• Background
 – Motivation: Low emissions combustors for aircraft gas turbine engines
 – NASA's combustor research
 – Thermoacoustic instability => Active control

• Current Effort
 – Identify a low emissions combustor concept with thermoacoustic instability
 – Experimentally characterize the instability behavior
 – Develop a simulation that captures the combustion instability
 – Validate the simulation against experimental data

• Future Plans
Effect of Fuel Injection Schemes on NOx Emission

- **MP-LDI**
- **MSV 9 inj, 60 °sw**
- **MSV 9 inj, 45 °sw**
- **MPIM-25 inj**
- **MPIM-36 inj**

Range of LPP data:
- **T$_3$=810K, P$_3$=2760 kPa, ΔP/P=4%**

- **Gaseous (LP)**
- **Lean-Premixed**

- **Quicker vaporization**
- **Uniform gas phase mixing**

Courtesy of Bob Tacina
Example 7-point LDI Layout, Research Interests

Single element configurations
Swirl numbers, radial vs. axial
Venturi contraction
Downstream recirculation zones
Laminate and machined assembly
SiC fabrication

Multi-element interactions
Recessed Pilot
Lean-Burning, Ultra-Low-Emissions Combustors Are More Susceptible to Thermoacoustic Instabilities

1. Higher performance fuel injectors => more turbulence
2. No dilution air => reduced flame holding
3. Reduced film cooling => reduced damping
4. More uniform temperature distribution => acoustically homogeneous
5. Shorter combustor => higher frequency instabilities

Multiple injection points allow temporal and spatial fuel/air control
Active Combustion Instability Control Demonstrated for Conventional Combustor

Large amplitude, low-frequency instability suppressed by 90%

Liquid-fueled combustor rig emulates engine observed instability behavior at engine pressures, temperatures, flows

High-frequency, low-amplitude instability is identified, while still small, and suppressed almost to the noise floor.
Instability Control Simulation for Conventional Combustor

High Frequency Instability

Low Frequency Instability

Simulated Control

Measured Control
Low Emissions Combustor Prototype with Observed Instability

Range of Combustor Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure (psia)</td>
<td>65 – 250</td>
</tr>
<tr>
<td>Inlet Temperature, °F</td>
<td>400 – 1000</td>
</tr>
<tr>
<td>Air Flow, lb/s</td>
<td>0.9 – 4.0</td>
</tr>
<tr>
<td>Fuel Flow, lb/hr</td>
<td>approx. 100 – approx. 400</td>
</tr>
</tbody>
</table>

Dynamic pressure transducer, $P_{4\text{DynDn}}$

Dynamic pressure transducer, $P_{3\text{DynB}}$

Dynamic pressure transducer, $P_{4\text{DynUp}}$
Low-Emissions Combustor Prototype Instability Amplitude Observed to Increase with Increasing Fuel/Air Ratio

<table>
<thead>
<tr>
<th>FAR</th>
<th>Pressure</th>
<th>Max</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.025</td>
<td>0.025</td>
<td>0.05 psi</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0252</td>
<td>0.0252</td>
<td>0.1 psi</td>
</tr>
<tr>
<td>0.1</td>
<td>0.0281</td>
<td>0.0281</td>
<td>0.2 psi</td>
</tr>
<tr>
<td>0.12</td>
<td>0.029</td>
<td>0.029</td>
<td>0.5 psi</td>
</tr>
<tr>
<td>0.63</td>
<td>0.032</td>
<td>0.032</td>
<td>1 psi</td>
</tr>
<tr>
<td>1.05</td>
<td>0.036</td>
<td>0.036</td>
<td>2 psi</td>
</tr>
</tbody>
</table>

Increasing FAR

- RMS Time: 0.025
- RMS Mean: -0.32

- RMS Time: 0.0252
- RMS Mean: -0.52

- RMS Time: 0.0281
- RMS Mean: -0.52

- RMS Time: 0.029
- RMS Mean: -0.52
Trend in Instability Amplitude vs. FAR Multiple Test Runs

Combustor Pressure Amplitude at Instability Freq., psi

Fuel/Air Ratio

Run 905 - 135psia, 1000degF, 1.84pps, 10/90
Run 905 - 151psia, 1000degF, 2.05pps, 10/90
Run 905 - 151psia, 1000degF, 2.05pps, 20/80
Run 901 - 166psia, 1000degF, 2.26pps, 10/90
Run 906 - 166psia, 1000degF, 2.26pps, 10/90
Run 901 - 192psia, 950degF, 2.66pps, 10/90
Run 906 - 192psia, 950degF, 2.66pps, 10/90
Run 901 - 250psia, 1000degF, 3.4pps, 10/90
Run 905 - 250psia, 1000degF, 3.4pps, 10/90
Run 901 - 250psia, 1000degF, 3.4pps, 20/80
Run 905 - 250psia, 1000degF, 3.4pps, 20/80

Suspect Data Point
Trend in Instability Frequency vs. FAR
Multiple Test Runs

- Run 905 - 135psia, 1000degF, 1.84pps, 10/90
- Run 905 - 151psia, 1000degF, 2.05pps, 10/90
- Run 905 - 151psia, 1000degF, 2.05pps, 20/80
- Run 901 - 166psia, 1000degF, 2.26pps, 10/90
- Run 906 - 166psia, 1000degF, 2.26pps, 10/90
- Run 901 - 192psia, 950degF, 2.66pps, 10/90
- Run 906 - 192psia, 950degF, 2.66pps, 10/90
- Run 901 - 250psia, 1000degF, 3.4pps, 10/90
- Run 905 - 250psia, 1000degF, 3.4pps, 10/90
- Run 901 - 250psia, 1000degF, 3.4pps, 20/80
- Run 905 - 250psia, 1000degF, 3.4pps, 20/80
Motivation for Combustion Instability Simulation

• Successful active control design requires accurate modeling and simulation.
 – The essential physical phenomena should be correctly captured
 • (e.g. self-excitation).
 – Characterization and control design necessitate rapid simulation
 • (i.e. relative simplicity).
 – Simulation must lend itself to implementing a variety of sensing and actuation strategies.

• The developed simulation method must achieve these goals for combustor configurations:
 – in which the potential instabilities propagate axially
 – that contain abrupt changes in cross sectional area
Simulation Features

- Time-accurate
- Physics-based, Reacting, Sectored 1-D
 - Computationally efficient area transitions
- Upstream and Downstream boundary conditions modeled to match rig

Within Each Sector:
- One-Dimensional
- Perfect Gas
Low Emissions Combustor Instability Model Development

Perforated plate

CE5B-STAND 1 SIMULATION LAYOUT

Blockage ratio = 0.83

P₀' = 1.01
T₀' = 1.00
ρ'u' = 0.005
Airflow

28.4 in.

1.34 in.

35.7 in.

Water spray

P₄DynDn

P₄DynUp
Combustion Instability Simulation Results

- Self-sustained instability simulated
- Instability frequency and amplitude closely match experimental values

0.04 seconds of simulation data with f/a=0.029

0.04 seconds of rig data with f/a=0.029
Combustion Instability Simulation Results for Multiple Operating Conditions – Amplitude Trend Replicated

![Graph showing amplitude trend for different operating conditions.](image)
Combustion Instability Simulation Results for Multiple Operating Conditions – Frequency Trend Replicated
Simulated Instability Amplitude is Highly Dependent on Exit Blockage Ratio (Water Spray)
Concluding Remarks

• **Status**

 – A near-term low-emissions combustor prototype has been identified for active combustion control research

 – The combustor's instability behavior has been characterized
 • Trends in instability amplitude and frequency have been quantified

 – A simulation of the combustion instability behavior has been developed
 • Reasonably matches the combustor experimental behavior

 – Characterization and simulation provide physical insights that aid control development
Concluding Remarks

- **Future plans**
 - Utilize the simulation to develop active combustion instability control methods
 - Integrate control methods with appropriate sensors and actuators to demonstrate combustion instability suppression in the combustor prototype
 - Incorporate NRA technologies into combustion control approaches
 - Utilize these tools/techniques as part of the long term plan to develop multi-point LDI combustors with extremely low emissions throughout the engine operating envelope
References

