Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux conditions is not well understood. In this paper, a laser heat flux technique is used to investigate the coating delamination crack propagation under realistic temperature-stress gradients and thermal cyclic conditions. The coating delamination mechanisms are investigated under various thermal loading conditions, and are correlated with coating dynamic fatigue, sintering and interfacial adhesion test results. A coating life prediction framework may be realized by examining the crack initiation and propagation driving forces for coating failure under high-heat-flux test conditions.
Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

Dongming Zhu*, Louis J. Ghosn** and Robert A. Miller*

* Durability and Protective Coatings Branch
** Mechanics and Life Prediction Branch
Structures and Materials Division
NASA John H. Glenn Research Center
Cleveland, Ohio 44135, USA

Contact: Dr. Dongming Zhu, (216) 433-5422; Dongming.Zhu@nasa.gov

This work was supported by NASA Fundamental Aeronautics Programs

32nd International Conference on Advanced Ceramics and Composites
January 30, 2008
Objective

- High heat flux testing development
- The coating delamination behavior under thermal gradients
- Finite element analysis of coating delamination driving forces
- Coatings design and life prediction issues
- Summary and Conclusions
High-Heat-Flux Tests Critical to Turbine Component Coating Development

— High-heat-flux laser test approach for thermal barrier coating cyclic durability

- Temperature gradient requirements: up to 200 °C/100 microns
- Heat flux requirements up to 200-300 W/cm²

NASA CO₂ Laser Rig

Current capability up to 315 W/cm²
High-Heat-Flux Tests Critical to Turbine Component Coating Development (continued)

— Atmospheric burner rig heat fluxes characterized using an embedded thermocouple (TC) sensor approach
— Initial heat fluxes 100-200 W/cm² observed
High-Heat-Flux Capability Recently Developed for High Pressure Burner Rig

— Testing pressure up to 12 atm
— Gas velocity up to 400 m/s
— Heat flux up to 200 W/cm²
Generalized Coating Failure Modes for Thermal Barrier Coatings under Thermal Gradients

(a) Low Heat Flux and High Interface Temperature
(b) Medium Heat Flux and Interface Temperature
(c) High Heat Flux and Low Interface Temperature
Generalized Coating Failure Modes for Environmental Barrier Coatings under Thermal Gradients

- Sintering and CTE mismatch induces surface wedge-shape crack propagation
- Surface cracking accelerates coating delamination under mixed mode loading (K_I and K_{II})
- Interfacial pore formation due to the chemical reactions further accelerated coating spallation under thermal gradient conditions

![Diagram of coating failure modes](image)
Damage Accumulation of Thermal Barrier Coatings under Laser Heat Flux Testing

- Approximate constant heat flux
- Sintering induced conductivity increase during the steady-state testing
- Sintered coatings tend to have accelerated delamination under subsequent cyclic testing and damage accumulation
High Heat-Flux Sintering Induced Cracking and Delamination in Turbine EB-PVD ZrO$_2$-7wt%Y$_2$O$_3$ Coatings

— High-heat-flux surface sintering cracking and resulting coating delaminations

The Cyclic Life of Thermal Barrier Coatings

Heat Flux 100 W/cm²

Non conducting crack

0.254mm

3.175 mm

0.127mm

Testing Type

Interface temperature 2125°F

Cycle life, hours

400

350

300

250

200

150

100

50

0

0 2 4 6 8 10 12

Time, sec.

K_{effective}, MPa mm\(^{1/2}\)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FCT

Laser heat flux

Burner heat flux
The Cyclic Life of Thermal Barrier Coatings - Continued

- Zr2.Y0.75Gd0.75Yb (ln)
- Zr2.0Y1.5Gd1.5Yb (ln)
- Zr1.6Y1.2Gd1.2Yb (ln)
- Zr2.5Y0.75Gd0.75Yb (Ln)
- Zr2.0Y1.5Gd1.5Yb (Ln)
- Zr1.6Y1.2Gd1.2Yb (Ln)
- Zr2.5Y0.75Gd0.75Yb (2h) (Ln)
- Zr2.0Y1.5Gd1.5Yb (2h) (Ln)
- Zr1.6Y1.2Gd1.2Yb (2h) (Ln)
- 7YSZ (ln)
- 7YSZ (Ln)
- 7YSZ (2h) (Ln)
- 7YSZ
- 7YSZ Laser heat flux
- 7YSZ burner rig
Thermal Gradient Tested TBC Delamination and Modeled TBC Delamination Induced Conductivity Reduction

Laser tested at $T_{\text{surface}}=\sim1316^\circ\text{C}$ and $T_{\text{interface}}=\sim1100^\circ\text{C}$ under the combined steady state (22 hrs) and 20 min heating/3 min cooling cycles (256 cycles)

FEA modeling of temperature distributions

Thermal conductivity reduction as a function of crack length

Heat Flux, W/cm²
- 95.0
- 85.0
- 45.7

Normalized Crack Length, (a/λ)
Delamination Driving Force Increases with Heat Flux

Effective SIF vs Crack Length

- K_{eff}, MPa.m$^{1/2}$
- Normalized Crack Length, (a/λ)
- Heat flux, W/cm2:
 - 95.0
 - 85.0
 - 45.7
Crack Propagation Rate Increases with Interface Test Temperature

![Graph showing crack propagation rate vs. interface test temperature](image-url)
Coating Failure Modes under Very High Thermal Gradients

0.5 mm
Accelerated Delamination under Vertical Surface Cracks

\[\Delta T \approx 500^\circ C \]
Delamination Driving Forces Correlated to Temperature Gradients and Coating Elastic Modulus

\[G = \frac{1}{6} \left(\frac{1 + \nu_1}{1 - \nu_1} \right) E_1 h \left(\alpha_1 (T_s - T_0) \right)^2 \]

As compared to CTE mismatch
\[G = \frac{\sigma^2 h}{2\bar{E}} = \left[Eh \frac{(1 + \nu)/(1 - \nu)} \right] (\Delta \alpha \Delta T)^2 / 2 \]

Hutchinson, Irsee, Germany 2007; Evans and Hutchinson, Surface Coating Technology, 2007

Predicted delamination driving force G can be in the range of 20-80 J/m²
Delamination Crack Propagation Observed under Heat-Flux Thermal Gradient Cyclic Condition

Crack propagation and coating delamination

ZrO2-8wt%Y2O3

~2 mm

11th cycle

~3.5 mm

117th cycle

~4.2 mm

177th cycle

~11 mm

After spalling

A center penny-shape crack propagation

Thermal conductivity, W/m-K

Temperature, °C

Time, hours

Cycle number

Thermal conductivity change as a function of cycle number

Crack propagation da/dN-stress intensity amplitude ΔK plot for life prediction
High Temperature Sintering Accelerates Cracking in Thermal and Environmental Barrier Coatings

- Conductivity initially increased due to sintering
- Conductivity later decreased due to coating delamination cracking resulting from the large sintering shrinkage
- Coating delaminates at temperature during the steady-state testing due to sintering

![Graph showing thermal conductivity over time with measured and predicted trends.](image)

- Thermal conductivity, W/m-K
- Time, hours

Sintering cracks

- Measured thermal conductivity
- Predicted thermal conductivity

T_{\text{surface}} = 1482°C

T_{\text{interface}} = 1250°C

Conductivity reduction due to sintering cracking induced delamination cracking

After 20h testing
Failure Modes of Environmental Barrier Coating Systems

- Mullite
- Mullite + BSAS
- Si
- YSZ
- BSAS + Mullite
- SiC/SiC
Accelerated Coating Degradation under Thermal Gradient and Water Vapor Environments

- Significant interfacial pore and eutectic phase formation due to water vapor attack and Si diffusion at the interface temperature of 1300°C under the thermal gradient cycling conditions

Coating spallation
Temperature Capability of Advanced Thermal and Environmental Barrier Coatings

![Graph showing temperature capability of coatings](image)

- Supersonics project goal
- Specific weight change, mg/cm²-h
- 1/T, K⁻¹
- Temperature, °C
- Thermal conductivity, W/m-K
- 1/T·10⁴, K⁻¹
- Plasma-sprayed coatings (except specified)
- Advanced coatings

Materials:
- AS800
- SN282
- SiC/SiC CMC
- La₂Hf₂O₇
- HfO₂ (doped)
- RE Alloyed Mullite
- BSAS
- Rare earth silicates
- PVD-ZrO₂-7wt%Y₂O₃ k20
- Refarctron k₀
- Refarctron k₂₀
- Praxair k₀
- Praxair k₂₀
- NASA k₀
- NASA k₂₀
- ZrO₂-8wt%Y₂O₃ anti-sintering k₂₀
- ZrO₂-8wt%Y₂O₃ k₂₀
- PVD t' low k k₂₀
- PVD cubic low k k₂₀

www.nasa.gov 22
Conclusions

• The coating failure involved both time-temperature dependent sintering and cycle dependent fatigue processes

• Coating high temperature stability demonstrated critical durability issue

• Increased delamination driving forces and accelerated degradation quantified under heat fluxes and thermal gradients

• Advanced low conductivity, high stability sintering resistant, and compliant coatings demonstrated better long-term durability

• Design databases and life prediction approaches established