Abstract:
An overview of the work performed by Rolls-Royce under contract NNL08AA29C is presented. The work includes computational fluid dynamic (CFD) analysis for, and design of, a highly variable cycle exhaust model for the Supersonic project (NRA NN06ZEA001N). The CFD analysis shows that the latest design improvements to the clam shell doors have increased flow through the ejector over that achieved with previous designs.
Low Noise Highly Variable Cycle Nozzle for Next Generation Supersonic Aircraft

Dr. Jack S. Sokhey, LibertyWorks®
Matthew Kube-McDowell, Grad. Student, Purdue University

Presented at Fundamental Aeronautics 2008 Annual Meeting
Re: NRA NN06ZEA001N, Contract NNL08AA29C, COTR – Brenda Henderson
Supersonics Project – Airport Noise

SUP.07.04 SUP Noise Engineering

- Milestone SUP.07.04.012
 - HVC model system delivered – 4/2009

- Milestone SUP.07.04.013
 - HVC acoustic system performance assessed – 12/2007
Historical Background

- **Propulsion System for Supersonic Aircraft**
 - Medium BPR Turbofan
 - Variable Cycle Optimized for OPR at low speed
 - Jet Noise at Take-off
 - Based on earlier Design for SSBJ (NAS3-03123)
 - RB577-260-LM2 engine-NASA QSV-IIPS Study - Tests conducted in June 2003 at Nozzle Acoustic Test Rig (NATR), GRC.

- **Exhaust Nozzle Development**
 - Based on Concord Nozzle Design
 - Variable Geometry Nozzle
 - Early CFD Flow Simulations
Variable Geometry Exhaust System

- **Baseline Exhaust Nozzle**
 - Mixed Flow Exhaust
 - Variable geometry CD nozzle
 - A8 and A9 (Exit)
 - Actuated Clam Shell Doors or buckets as ejectors

- **Re-design for Low Noise**
 - CFD design Validation
 - Optimum ejector door setting for thrust and jet noise
 - Performance Improvement
 - High Fidelity nozzle model design for acoustic prediction
Baseline Analysis-Validation (April 2006)

- Design and CFD Analysis - Fluent
 - 2003 design tested in 2003 at NASA GRC
 - Navier-Stokes Viscous Compressible Solution - Standard ke turbulence model
 - Second order explicit / implicit solution

Mpeak ~1.6
CFD Based Design and Analysis

Computational Domain and GRID
- Pointwise Code: Gridgen – Mesh
- Structured grid in far-field plume
- Prisms in boundary layer zone
- Unstructured in complex spaces

Operating Condition
Mach 0.3 SL Take-off

90 Degree Sector Meshed and Modeled

3.96 Million Hybrid Cells
CFD Computational Problem Set Up & BC’s

- Solver used: Fluent 6.2 - Density-based explicit
- Turbulence Model: standard $k-\varepsilon$ turbulence model with wall functions
- Discretization: first-order upwind w/ under-relaxation, second-order upwind

Note: The grid extends over 7.5 nozzle diameters radially from the centerline and about 10 diameters downstream.
Preliminary Nozzle Design Modifications

- **Objective:** Reduce High Mach Numbers
 - $M_{\text{peak}} < 1$ upstream of throat
 - $M_{\text{peak}} \approx 1.05$ on the side wall holding the buckets
 - Estimated increase in W_p at 0.3M TO Operation Case over Original Nozzle baseline ≈ 8
 - Clean flow through Ejector Passages
2008 Nozzle Design Configuration
Internal Nozzle Flow-field
Mach Number Development

Contours of Mach Number

FLUENT 6.3 (3d, pbns, skel)

Jul 24, 2008

Throat

Compression
Nozzle Plume Characteristics

Take off Configuration

Mach Numbers

Mach in Ejector Slot region

Total Temperatures

Good Plume Mixing at 10 diameters

Turb. Kinetic Energy
Nozzle/Ejector Flow-Field Region

- Mach number Distribution

- TKE Distribution
 - Low Mach numbers – more noise suppression
 - No reverse flow through ejector; some recirculation in slot corner
 - Vorticity from sidewall and blunt TE increases the turbulent wakes
Downstream Plume Flow-Field
Turbulent Energy Decay

Potential core
Turbulent kinetic Energy along jet centerline

- Decay
- 30° Slice
- 90° Slice
- at 2D
- 5D
- 7.5D
- ~10D
CFD Analysis at M=1.8 Cruise Case (CR)

- Grid: ~10.4 million cells
- Grid resolved for boundary layers, mixing layers, and discontinuities over ejector seam
- High-speed flow and shocks slowing convergence – second-order-accurate solution drifting/oscillating, but stable

Shock predicted over ejector seam
Modifications to Ejector Doors of the SS Nozzle

- CFD analysis indicated 20% more ejector flow with no separation on the inner surface, lower turbulence and also increased thrust.

Rounded Edges

90° Plane Slice
Distribution of Turbulent Kinetic Energy
Mach 0.3, SL Take off Configuration

Downstream (6 diameters)

Caution: Logarithmic Scale

Contours of Turbulent Kinetic Energy (k) (m²/s²)
Sep 18, 2008
FLUENT 6.3 (3d, pbns, skel)
Ejector Flow Path

Current Nozzle Design

w/ Modified ejector Door

Current Nozzle Design
Conclusions

- Analysis of Rolls-Royce Variable Geometry SS Nozzle shows improved noise suppression features during Take-off
 - Low Mach numbers in throat region
 - Adequate ejector flow for plume suppression with minimum flow separation, turbulence decay and efficient mixing
 - Small improvement from ejector flow passage

- The scaled model nozzle design can proceed with the current configuration improvements.