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Brief, Popular Summary of the Paper: 

Long-term variations in ozone have been caused by both natural and humankind related 

processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons 

and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of 

these substances. Certain natural ozone influences are also important in polar regions and are caused by 

the impact of solar charged particles on the atmosphere. Such natural variations have been studied in 

order to better quantify the human influence on polar ozone. 

Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles 

(mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the 

polar regions. "Solar proton events" have been used to describe these phenomena since the protons 

associated with these solar events sometimes create a significant atmospheric disturbance. 

We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere 

Commui~ity Climate Model (WACCM) to study the long-term (> few months) influences of solar proton 

events froin 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar 

proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes 

in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere 

(50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- 

containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, 

called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived 

stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 

2004, and caused increases in odd nitrogen which lasted for several months after individual events. 

Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the 

largest events. However, the computed total column ozone and stratospheric temperature changes 

connected with the solar events were not found to be statistically significant. Thus, solar proton events do 

not likely contribute significantly to measured total column ozone fluctuations and stratospheric 

temperature changes. 
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Abstract: The Whole Atmosphere Community Climate Model (WACCM3) has been used to 

study the long-term (> few months) effects of solar proton events (SPEs). Extremely large solar 

proton events occurred in 1972, 1989,2000,2001, and 2003 and caused long-lasting atmospheric 

changes. The highly energetic solar protons produced odd hydrogen (HO,) and odd nitrogen 

(NO,), which then led to ozone variations. The long-term effects on ozone were caused by 

the NO, enhancements since the HOx increases were short-lived (days). Very large NO, 

enhancements lasted for months in the middle and lower stratosphere after a few of the largest 

SPEs. SPE-caused NO, increases computed with WACCM3 were statistically significant at the 

95% level throughout much of the polar stratosphere and mesosphere in the recent solar 

maximum five-year period (2000-2004). WACCM3-computed SPE-caused polar stratospheric 

ozone decreases of >lo% continued for up to five months past the largest events. WACCM3 

also computed SPE-caused polar lower stratospheric ozone increases >lo% in the Southern 

Hemisphere (SH). These SH impacts were due to interference by enhanced NO, constituents 

with the chlorine and bromine catalytic cycles for ozone, leading to a long-lived increase in 

ozone several months after the very large July 2000 SPE. Annually averaged SPE-caused polar 

total ozone and temperature changes from WACCM3 were not found to be statistically 

significant. 



1. Introduction 

Large solar eruptions can cause huge fluxes of high-energy solar protons that reach Earth, 

especially near solar maximum. Such periods of intense solar proton flux are known as solar 

proton events (SPEs) and tend to be infrequent. These SPEs typically last for a few days and 

lead to polar atmospheric changes through ionization, dissociation, dissociative ionization, and 

excitation processes. Some of the larger SPEs have caused a significant change in chemical 

constituents such as HO,, NOy, and ozone [e.g., Heath et al., 1977; Thomas et al., 1983; 

McPeters and Jackman, 1985; McPeters, 1986; Zadorozhny et al., 1992; Jackman et al., 1995, 

2001, 2005a, 2008; Randall et al., 2001 ; Seppala et al., 2004, 2006; Lopez-Puertas et al., 

2005a,b; von Clarrnann et al., 2005; Orsolini et al., 2005; Degenstein et al., 2005; Rohen et al., 

2005; Verronen et al., 2005, 20061. Since SPEs affect radiatively active ozone, they have been 

computed to cause middle atmospheric temperature and other dynamical changes [Reagan et al., 

198 1; Jackrnan and McPeters, 1985; Roble et al., 1987; Reid et al., 1991; Zadorozhny et al., 

1994; Jackman et al., 1995; Krivolutsky et al., 2006; Jackman et al., 20071. 

The magnitude and longevity of the SPE-caused atmospheric constituent and temperature 

changes has a direct relationship to the long-term stratospheric trends, which are so important in 

understanding the anthropogenic impact on ozone [WMO, 20071. The SPE-caused impacts are 

largest in the polar regions in the mesosphere and upper stratosphere. Quantifying the downward 

and Equator-ward transport of this SPE-induced perturbation is one of the main objectives of this 

paper. 

SPEs lead to ionization and the production of the important constituent families of HOx 

(H, ON, HO2) and NOy w(~s), N(~D), NO, NO2, NO;, N20i, HNO;, H02N02, ClON02, 

BrON02). The SPE-produced HO, constituents are relatively short-lived (-days) and lead to the 



destruction of ozone in the upper stratosphere and mesosphere (pressures less than about 2 hPa). 

Both short- and longer-term (-months) catalytic ozone destruction is caused by the SPE- 

produced NO, constituents in the lower mesosphere and stratosphere (pressures greater than 

about 0.5 hPa) via the well-known NOx (NO+N02) ozone loss cycle 

NO + 0 3  + NO2 + 0 2  

followed by NO2 + 0 + NO + O2 

Net: 0 + 0 3  --) 0 2  + 0 2 .  

Some modeling studies have addressed the longer-term atmospheric influence of SPEs 

[e.g., Jackman et al., 1990, l995,2000,2005a,b; Reid et al., 1991; Semeniuk et al., 2005; 

Jackman and Fleming, 20081. Only one of these previous studies [Semeniuk et al., 20051 used a 

general circulation model (GCM). In that study, Semeniuk et al. [2005] focused on the huge 

polar NOx lower mesospheric enhancements observed by ACE (Atmospheric Chemistry 

Experiment) in mid-February 2004, discussed in Rinsland et al. [2005], and found that the 

Oct./Nov. 2003 SPEs were a relatively minor contributor compared with the auroral NOx source. 

We studied the short- and medium-term (days to a few months) atmospheric constituent 

effects of very large SPEs in Jackman et al. [2008] with version 3 of the Whole Atmosphere 

Community Climate Model (WACCM3). The present investigation complements that study with 

model simulations and analyses of the long-term (>few months) stratospheric constituent 

changes caused by SPEs. WACCM3 is a general circulation model with complete interactive 

photochemistry. The model has a domain that extends from the ground to the lower 

thermosphere, which allows study of the detailed time-dependent 3 - 0  atmospheric response to a 



variety of perturbations. We will focus on the years 2000-2004, in which six of the largest ten 

SPEs in the past 45 years have occurred [Jackrnan et al., 20081, but will also address the SPE- 

caused changes over the longer 1963-2004 period. 

This paper is divided into six sections, including the Introduction. The solar proton flux 

and SPE-induced production of HOx and NO, are discussed in Section 2. A description of 

WACCM3 is given in Section 3. WACCM3 model results for SPE-caused long-term constituent 

changes in solar cycle 23 (years 1996-2004) are shown in Section 4 while WACCM3 model 

results for SPE-caused long-term constituent changes over the period 1963 through 2004 are 

discussed in Section 5.  The conclusions are presented in Section 6. 

2. Proton Fluxes; Odd Hydrogen (HO,) and Odd Nitrogen (NO,) Production 

Several satellites in interplanetary space or in orbit around the Earth have measured solar 

proton fluxes. The National Aeronautics and Space Administration (NASA) Interplanetary 

Monitoring Platform (IMP) series of satellites provided measurements of proton fluxes from 

1963- 1993 [Jackrnan et al., 1990; Vitt and Jackrnan, 19961. The National Oceanic and 

Atmospheric Administration (NOAA) Geostationary Operational Environmental Satellites 

(GOES) provided observed proton fluxes from 1994-2004 [Jackrnan et al., 2005bl. 

The proton flux data from the satellites were used to compute daily average ion pair 

production profiles using the energy deposition methodology discussed in Jackman et al. [I9801 

and Vitt and Jackrnan 119961. The deposition of energy by all the protons and associated 

secondary electrons is included in the scheme. The creation of one ion pair was assumed to 

require 35 eV [Porter et al. 19761. Details about the source of the proton fluxes for the various 

time periods are given in Jackrnan et al. [2008]. The daily averaged SPE-produced ionization 



rates from 1963 through 2004 were calculated for use in WACCM3 and are provided as 

functions of pressure between 888 hPa (-1 km) and 8 x loq5 hPa (-1 15 km) at the SOLARIS 

(Solar Influence for SPARC) website (http://strat-tlwx .met.fu- 

bcrlin.de/-mattbes/s~~a.rclin~~~tdata~l~tn~l). 

Odd hydrogen (HO,) is produced through complex ion chemistry [Solomon et al. 198 11 

by the SPEs. The SPE-produced HO, is a function of ion pair production and altitude and is 

included in WACCM3 simulations using a lookup table from Jackman et al. [2005a, Table 11, 

which is based on the work of Solomon et al. [ 198 11. The HO, constituents have a relatively 

short lifetime (-hours) throughout most of the mesosphere, and thus do not influence the 

stratosphere on a long-term (> few months) time period. Jackman et al. [2007] calculated the 

ozone depletion and dynamics change from solar proton enhanced HO, constituents with the 

Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME- 

GCM). They showed that mesospheric temperature and wind perturbations from SPE-produced 

HO, were greatly diminished in just 4-6 weeks. 

Odd nitrogen is produced when the energetic charged particles (protons and associated 

secondary electrons) dissociate N2. We assume that -1.25 N atoms are produced per ion pair and 

divide the proton impact of N atom production between ground state (-45% or -0.55 per ion 

pair) and excited state (-55% or -0.7 per ion pair) nitrogen atoms [Porter et al., 19761. Thus in 

our model simulations we use a production of 0.55 ground state N(~s) per ion pair and 0.7 N(~D)  

atoms per ion pair. 

The period January 1, 1995 through December 3 1,2004 included some very quiet periods 

with minor or no SPEs and some very large SPEs in 2000,2001, and 2003. Figure 1 shows a 

time series of our computed daily averaged global NO, production from SPEs in the stratosphere 



and mesosphere in this time period. Although the solar UV-induced oxidation of nitrous oxide 

(N20 + o('D) + NO + NO) provides the largest source of NO, in the middle atmosphere (52-58 

gigamoles per year; Vitt and Jackman [1996]), the SPE source of NO, can be significant on 

certain days. This applies particularly at polar latitudes where the transport from lower latitudes 

and the larger solar zenith angles result in a somewhat smaller local source of NOy due to N20  

oxidation. Table 1 shows the daily NOy production from SPEs during the largest periods of 

proton fluxes in the ten year period 1995-2004. SPE-produced NOy greater than 1 gigamole was 

computed for July 14-15, 2000; November 9, 2000; September 25-26,2001; November 5-6, 

2001 ; November 24,2001 ; and October 29,2003. 

If the SPE-produced NOy is transported to the middle and lower stratosphere [e.g., 

Randall et al., 2001; Jackman et al., 2005a1, it has a lifetime of months to years. Downward 

transport of NO, occurs mainly in the fall and winter time periods [Oct.-Nov.-Dec.-Jan.-Feb.- 

Mar. (ONDJFM) in the Northern Hemisphere; Apr.-May-Jun.-Ju1.-Aug.-Sep. (AMJJAS) in the 

Southern Hemisphere], thus SPEs in these time periods cause longer-lasting effects on the 

stratosphere. 

3. Description of the Whole Atmosphere Community Climate Model (WACCM3) 

WACCM3 is a useful tool for investigating the coupling among the various atmospheric 

regions from the troposphere through the middle atmosphere to the lower thermosphere [Sassi et 

al., 2002, 2004; Forkman et al., 2003; Richter and Garcia, 2006; Garcia et al., 2007; Marsh et al., 

2007; Jackman et al. 20081. The model has a domain from the surface to 4.5 x loh6 hPa (about 

145 km), with 66 vertical levels, and includes fully interactive dynamics, radiation, and 

chemistry. Modules from the Community Atmospheric Model (CAM3), the Thermosphere- 



Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), and the 

Model for Ozone And Related chemical Tracers (MOZART-3) are incorporated into WACCM3 

to simulate the dynamics and chemistry of the Earth's atmosphere. The vertical resolution is 

4 . 5  km between the surface and about 25 krn. Above that altitude, vertical resolution increases - 

slowly to 2 km at the stratopause and 3.5 krn in the mesosphere; beyond the mesopause, the 

vertical resolution is one half the local scale height. The version of WACCM3 used here has 

latitude and longitude grid spacing of 4" and 5', respectively. 

WACCM3 was forced with observed time-dependent sea surface temperatures (SSTs), 

observed solar spectral irradiance and geomagnetic activity changes, and observed 

concentrations of greenhouse gases and halogen species over the simulation periods [see Garcia 

et al., 20071. We have completed eight WACCM3 simulations, four with the daily ionization 

rates from SPEs and four without. The ionization rates, when included, were applied uniformly 

over both polar cap regions (60-90°N and 60-90's geomagnetic latitude) as solar protons are 

guided by the Earth's magnetic field lines to these areas [e.g., McPeters et al., 1981; Jackrnan et 

al., 2005al. There are differing offsets of the geomagnetic and geographic poles in the two 

hemispheres thus the effects are not expected to be symmetric in the northern and southern 

hemispheres. The four simulations [1 (a, b, c, d)] with the daily ionization rates from SPEs and 

the four simulations [I (w, x, y, z)] without the daily ionization rates were each performed over 

the 42 year period, Jan. 1, 1963 - Dec. 3 1,2004 [see Table 21. 

4. SPE-caused Long-term Atmospheric Changes in Solar Cycle 23 

The influence of very large SPEs in the first nine years of solar cycle 23 (years 1996 - 

2004) caused some significant documented changes in atmospheric composition, primarily 



during and within several months of the events [e.g., Randall et al., 2001; Jackrnan et al., 2001, 

2005a,b, 2008; J a c h a n  and McPeters, 2004; Jackrnan and Fleming, 2008; Seppala et al., 2004; 

Degenstein et al., 2005; Lopez-Puertas et al., 2005a,b; Orsolini et al., 2005; von Clarmann et al., 

2005; Rohen et al., 20051. For instance, Randall et al. [2001] showed evidence from HALOE 

observations of enhancements of about 15 ppbv in NOx in the polar middle stratosphere two 

months after the July 2000 SPE in the Southern Hemisphere (SH), see Figure 2 (left). The NO, 

increases in Sep./Oct. 2000 are about a factor of 2-3 beyond the normal range in the polar middle 

stratosphere for years 1991-1999. We also computed NO, enhancements in Sep./Oct. 2000 with 

WACCM3 (simulation 1 (a))compared with years 1991 - 1999, see Figure 2 (right). 

Although both WACCM3 predictions and HALOE measurements show reasonable 

agreement, there are some differences between the WACCM3 predictions and HALOE 

measurements such as a somewhat differently shaped interannual variability and a sharper NOx 

peak in year 2000. These disparities point to differences between WACCM3 dynamics and 

atmospheric dynamics, a coarser model grid for WACCM3 than HALOE, and other differences 

discussed in more detail in Jackman et al. [2008]. In spite of these model/measurement 

differences, WACCM3 computed a very large NO, peak in the year 2000, which is similar to 

that observed in HALOE and was caused by the July 2000 SPE. We therefore analyze the 

WACCM3 output for longer periods beyond the several very large SPEs in solar cycle 23 and 

focus on longer-term atmospheric changes. Such analyses should address the primary question: 

Do very large SPEs significantly influence constituents, particularly ozone, in the middle 

atmosphere beyond six months past the events? 

4.1 SPE-caused Annually Averaged Constituent Changes 



We focus most of our analyses on NO, and ozone. As discussed before, the NOy family 

has a long lifetime in the polar stratosphere and can be greatly enhanced by very large SPEs. 

Stratospheric ozone is extremely important for life on Earth and its abundance is partly 

controlled by the NO, family. We show the WACCM3-computed annual mean NOy and ozone 

distribution in Figure 3 for 1996 from the ensemble l(w, x, y, z), which does not include SPEs 

and is near solar minimum. As discussed in Garcia et al. [2007] the WACCM3 ozone is in 

general agreement with HALOE data. There is a modest difference near 32 Ism in the tropics 

where WACCM3 is high by about 0.5 ppmv, which has been attributed to the WACCM3 NOx 

being too low at this altitude by about 15% [Eyring et al., 20061. Both NO, and ozone show 

peaks in the tropics with the NOy maximum being about 5 km higher in altitude. Near the top of 

the altitude domain in Figure 3 (left), the NOy clearly shows descent of NOy-rich air from higher 

altitudes in both hemispheres to the middle mesosphere (-0.04 hPa, 70 km) and lower. 

The annual zonal average computed change for 1996 caused by SPEs for NO, and ozone 

is shown in Figure 4 as the percentage difference between the ensemble averages of simulations 

I (a,b,c,d) and l(w,x,y,z). The colored regions in the plots indicate 95% statistical significance 

using Student's t-test. Note that there are up to +/-20% changes computed for NOy in the middle 

to upper mesosphere; however, such changes are mostly not statistically significant. This is not 

surprising given the fact that 1996 was a very quiet year with no substantial SPEs. Consistent 

with this, Randall et al. [1998; 20071 inferred from HALOE and POAM measurements that only 

minimal, if any, descent of mesospheric NOx to the southern hemisphere stratosphere occurred 

during 1996. Also, virtually none of the computed ozone change is statistically significant. 

The WACCM3-computed annual zonal mean NO, and ozone distribution is shown in 

Figure 5 for 2000 from the ensemble 1(w, X, y, z), which does not include SPEs and is near solar 



maximum. Near the top of the altitude domain in Figure 5 (left), the NOy shows descent of NOy- 

rich air from higher altitudes in both hemispheres to the lower mesosphere (-0.1 hPa, 64 krn). 

The descent of NOy in the polar SH in Figure 5 (left) is clearly larger than that seen in Figure 3 

(left) and is caused by the larger source of NOy near solar maximum from increased geomagnetic 

activity and high energy photons [also, see Figure 9 of Marsh et al., 20071. 

The computed annual zonal average change for 2000 caused by SPEs for NOy and ozone 

is shown in Figure 6 as the percentage difference between ensemble averages of simulations 

I (a,b,c,d) and 1 (w,x,y,z). The colored regions in the plots indicate 95% statistical significance 

using Student's t-test. There are over 100% maximum increases computed for NO, in the polar 

middle to lower mesosphere (Fig. 6, left) and a good portion of the computed polar NO, 

enhancements from 10 to 0.01 hPa are statistically significant. The very large SPEs in July and 

November, 2000, account for most of this increase in NOy. Unlike NOy, only small regions of 

the computed polar ozone changes are statistically significant. Computed ozone decreases of -5 

to -2 % are statistically significant in the SH polar middle to upper stratosphere (-1 0 to -2 hPa) 

and in the NH upper stratosphere (-4 to -1 hPa). Even smaller regions in the mesosphere show a 

statistically significant ozone decrease. 

Year 2001 was particularly active with three very large SPEs (one in September and two 

in November, see Table 1); thus maximum increases >loo% were computed for annual averaged 

SPE-impacted NO, in regions of the polar middle atmosphere in both hemispheres (Fig. 7, left). 

The colored regions in the plots indicate 95% significance using Student's t-test. A large portion 

of the computed polar NOy enhancements from 30 to 0.01 hPa are statistically significant. Most 

of the computed Northern Hemisphere (NH) polar ozone decrease above 20 hPa is statistically 



significant, however, only small portions of the SH polar ozone decreases are statistically 

significant. 

The extent of the statistically significant NH ozone decrease throughout much of the 

polar mesosphere is somewhat surprising. SPE-caused mesospfieric ozone decrease tends to be 

dominated by the HO, increases, which are short-lived [e.g., Jackman et al., 2001, Verronen et 

al., 20061. Analysis of our model results show that the SPE-produced HO, resulted in annual 

average NH polar ozone change from about -1% to -4%. The computed mesospheric ozone 

changes from SPE-produced NO, were from near 0% to -1%. Thus the huge H0,-caused ozone 

losses in the very SPE-active year 2001 did contribute to the overall annual average polar 

rnesospheric ozone change and helped result in a statistically significant NH ozone signal. 

The two very large SPEs in November 2001 occurred at a near-ideal time to maximize a 

significant NH impact due to the prevailing downward transport in the fall, which continued for 

another few months. The other very large SPE in September 2001 occurred near the end of the 

SH winter, thus a reduced statistically significant ozone impact was computed for the SH (Fig. 7: 

right). Although not statistically significant, we colnputed a modest ozone increase in the SH 

polar lower stratosphere (maximum >20%) as a result of the SPEs. This type of ozone behavior 

connected with large SPE-induced NO, increases has been discussed before [Jackman et al., 

2000; Jackman and Fleming, 20081 and is related to the interference by NOy constituents with 

the halogen (chlorine and bromine) catalytic cycles. 

In order to elucidate the WACCM3 result of SPE-caused ozone enhancements in the SH 

polar lower stratosphere, we focus on a smaller region of the atmosphere in Figure 8 for year 

2001. The annual zonal average change caused by SPEs for NO,, ozone, BrONO2, and ClONOz 

was computed and is shown over the globe from the ground to 10 hPa as the percentage 



difference between the ensemble averages of simulations 1 (a,b,c,d) and 1 (w,x,y,z). The large 

enhancements in SH polar NOy (Fig. 8, top left) between 300 and 10 hPa lead to increases in 

C10N02 (Figure 8, bottom right) and BrON02 (Fig. 8, bottom left) increases through the 

reactions 

C1O + NO2 + M + C10N02 + M 

BrO + NO2 + M + BrON02 + M. 

The chlorine and bromine reservoir species (C10N02 and BrON02) are produced at the 

expense of the reactive species (C10 and BrO) that drive the C10, and BrO, catalytic cycles. 

The ozone loss rates due to chlorine and bromine are then reduced in the SH lower polar 

stratosphere and ozone is increased (Fig. 8, top right). 

The annual zonal average change for the next three years (2002-2004) caused by SPEs 

for NO, and ozone was computed, again as the percentage difference between the ensemble 

averages of simulations 1 (a,b,c,d) and l(w,x,y,z). A large SPE occurred in April 2002 (see 

Table I), however, this event was much smaller than the very large SPEs of 2000 and 2001 and 

caused a smaller annual average maximum NO, enhancement (not shown). Still, a good portion 

of the polar middle atmosphere had a statistically significant NOy enhancement due to the SPEs 

in 2002. The statistically significant ozone impact of these SPEs was mainly confined to the NH 

polar middle stratosphere region in 2002 (not shown). 

Year 2003 had a very active period with a very large SPE in late October and a large SPE 

in early November (see Table I), connected with the "Halloween Storms" of 2003. Very large 

maximum increases (> 100 %) were computed for NOy in the polar NH mesosphere and large 

maximum increases (>50%) were computed for NO, in the polar SH mesosphere as a result of 

the SPEs (Fig. 9, left). A large portion of the computed polar NH NOy enhancements from 30 to 



0.01 hPa were statistically significant, whereas a more modest portion of the computed SH NOy 

enhancements were statistically significant in the same pressure range. There were only a few 

small regions that showed a statistically significant ozone change due to SPEs in 2003 (Fig. 9, 

right). 

Year 2004 was relatively quiet with no large SPEs. Modest statistically significant 

annual zonal average NOy enhancements were computed in the polar mesosphere for both 

hemispheres and a statistically significant NO, increase was calculated for the polar NH middle 

to lower stratosphere (not shown). This feature was probably a result of the downward transport 

of the NO, signal in 2003 to lower atmospheric regions. There were only very small regions that 

showed a statistically significant ozone change due to SPEs (not shown). 

Given the several very large SPEs that occurred in years 2000,2001, and 2003, we have 

also investigated the SPE-caused atmospheric changes in the five-year average 2000-2004. The 

computed changes produced by SPEs for NO, and ozone are shown in Figure 10 as the 

percentage difference between ensemble averages of simulations 1 (a,b,c,d) and 1 (w,x,y,z). The 

colored regions in the plots indicate 95% significance using Student's t-test. For the period 

2000-2004 period, very large maximum increases (>I 00 %) were computed for NOy in the polar 

NH and large maximum increases (>50%) were computed for the polar SH as a result of the 

SPEs (Fig. 10, left). Very large regions of the computed polar NOy enhancements are 

statistically significant in both hemispheres; however, the statistically significant region in the 

NH extends much farther into the lower stratosphere. This is a reflection of the larger NO, input 

to the NH during fall and winter (ONDJFM) of 20.1 gigamoles versus the SH input of 9.4 

gigamoles during corresponding seasons (AMJJAS). There are also more regions in the polar 

NH that show a statistically significant ozone change due to SPEs in the 2000-2004 period (Fig. 



10, right), which is related to the larger late fall and winter NO, input. The statistically 

significant mesospheric NH ozone change was mainly caused by the SPE-produced HO,. 

4.2 SPE-caused Polar Atmospheric Changes 

SPEs initially impact the polar cap regions (60-90' geonlagnetic latitude) of both 

hemispheres. The influence over longer periods beyond that initial disturbance is dependent on 

the amount of NOy produced and the strength of the downward transport. Therefore, the largest 

computed SPE impacts are at polar latitudes, which is consistent with Hood and Soukharev 

[2006], who inferred from HALOE data that there is no statistically significant signature of a 

solar cycle in low-latitude stratospheric NO,. We examine the WACCM3 SPE-caused changes 

at high latitudes in this section. 

We have investigated the polar changes over a particularly active one year period, July 1, 

2000 - June 30,2001. The time dependent atmospheric changes were computed, some of which 

are a result of the initial SPE input and some of which are a result of transport. The changes 

caused by SPEs for NO, and ozone in the latitude bands 70-90's and 70-90% are given in 

Figure 1 I .  We use the monthly average output for the WACCM3 simulations and present the 

percentage difference between the ensemble averages of simulations l(a,b,c,d) and l(w,x,y,z). 

This period included the very large July 2000 SPE, the third largest SPE period in the past 45 

years [see Table I of Jackman et al., 20081, and the very large November 2000 SPE, the sixth 

largest SPE period in the past 45 years, as well as another moderately large SPE, which occurred 

in April 2001. The computed NOy enhancement in the 70-90's band is enormous for the July 

2000 SPE with maximum increases >500% (Fig. 1 1, left top). This increase in NO,, an indicator 

of the very large SPE, is transported slowly and steadily downwards throughout the time period. 



The levels of increased NOy were reduced due to mixing with smaller amounts of NOy from 

lower latitudes and altitudes, eventually reaching levels of just over 20% NOy enhancement in 

the lower stratosphere (-300 to 40 hPa) by June 30,2001. The November 2000 SPE appears to 

have added somewhat to this huge NOy SPE-caused signal in late 2000. The April 2001 SPE 

caused significant changes in NOy, but its impact by June 30,2001 was located in the middle to 

upper stratosphere (-10 to 2 hPa). 

The longer-term computed ozone decrease connected with the July 2000 SPE is 

substantial, reaching levels >20% in the middle to upper stratosphere (-1 0 to 2 hPa) between 

August and November, 2000 (Fig. 11, left bottom). Note that we use WACCM3 monthly 

average output in these analyses, thus the much larger computed ozone decreases presented in 

Jackman et al. [2008] were not calculated. The larger computed ozone decreases of Jackman et 

al. [2008] were driven by the short-lived HO, constituents and did not last beyond a couple of 

days after the SPEs. In the later part of this period (October 2000 - June 2001 j, ozone increases 

below -10 hPa were computed; these are presumably due to the fact that enhanced NO, 

sequesters chlorine and bromine in the reservoir species (ClON02 and BrONOz), resulting in 

reduced ozone loss in this region of the stratosphere. The close correlation between the 

enhancements of ClONOz and BrONO2 and the enhanced lower stratospheric ozone is shown 

clearly in Figure 12. Both CIONO;! and BrONO;! are enhanced > I  0% throughout most of the 

region where the ozone is increased >lo% starting in January 2001. 

The computed SPE-caused NOy enhancement in the latitude band 70-90°N is larger for 

the November 2000 SPE than for the July 2000 SPE with maximum increases >1000% (Fig. 1 1, 

right top). The July 2000 SPE NH NOy enhancement was substantially reduced due to the 

summer sunlight increasing the loss process for NO, via 



NO + hv(< 191 nrn) + N + O 

followed by 

N + N O + N 2 + 0 .  

The levels of increased NOy due to the November 2000 SPE were reduced due to mixing 

with smaller amounts of NOy from lower latitudes and altitudes, eventually reaching levels less 

than 10% NO, enhancement in the middle stratosphere (-40 to 10 hPa) by May 200 1 (Fig. 1 1, 

right top). The July 2000 and April 2001 SPEs caused significant changes in NO,, but their 

impacts are primarily confined to pressures <10 hPa. 

The largest longer-term computed ozone decrease in the polar NH appears to be 

coimected with the November 2000 SPE and reached levels >lo% in the mesosphere and upper 

stratosphere in November 2000. The signal of ozone decrease was slowly transported 

downwards to the middle stratosphere and gradually diminished with decreases of <5% by the 

end of April 200 1 (Fig. 1 1, right bottom). 

We have also computed the polar changes over the longer period, January 1,2000 - 

December 3 1, 2004, which included several very large SPEs (see Table 1). The changes caused 

by SPEs for NO,, ozone, and temperature in the latitude band 70-90's are given in Figure 13. 

Very large enhancements of NOy (Fig. 13, top) extending from the mesosphere to the middle 

stratosphere are apparent in four of the five years (e.g., 2000,2001,2002, and 2003). The two 

years 2000 and 2002 show the deepest penetration of the enhanced NOy signal as a very large 

SPE and a large SPE in those years occurred in the fall or winter (July 2000 and April 2002, see 

Table 1). The SH polar ozone signal (Fig. 13, middle) follows the NOy signal into the 

atmosphere and is generally anti-correlated with NOy, except in the lower stratosphere (see 

Figure 12). 



Earlier papers have addressed the possibility of temperature changes resulting from SPEs 

[Reagan et al., 1981; Jackman and McPeters, 1985; Roble et al., 1987; Reid et al., 1991; 

Zadorozhny et al., 1994; Jackman et al., 1995; Krivolutsky et al., 2006; Jackman et al., 20071. 

Temperature changes (mostly decreases) of 1-10 K were computed to follow from very large 

SPEs, although most of these computed influences occurred within hours to days of very large 

SPEs. Reid et al. [I9911 did compute a fairly long-lasting upper stratospheric temperature 

decrease of about 1K nearly three months after the very large SPE of Oct. 1989. 

The SH polar temperature stratospheric signal (Fig. 13, bottom) is generally well- 

correlated with the ozone change. A fairly high degree of correlation was computed for the 

pressure range 30-200 hPa, where the correlation coefficient between temperature and ozone 

change was found to be greater than 0.75. 

The colored regions in Figure 13 indicate 95% statistical significance with the use of 

Student's t-test. Much of the computed NOy enhancement greater than about 20% in the middle 

stratosphere and above in the first two and a half years of the plot is statistically significant, 

however, very little of the computed NO, enhancement after May 2002 is statistically significant 

(Fig. 13, top). The areas of statistically significant ozone changes are much less than those for 

NO, enhancements (Fig. 13, middle). Four months in late 2000 (Sep.-Dec.) in the middle 

stratosphere, three months in late 2001 (0ct.-Dec.) in the upper stratosphere, and a few other 

small regions are statistically significant. Virtually none of the computed temperature changes 

are statistically significant (Fig. 13, bottom). 

The changes caused by SPEs for NO,, ozone, and temperature in the latitude band 70- 

90°N are given in Figure 14. Very large tongues of SPE-produced NOy enhancement (Fig. 14, 

top) extending from the mesosphere to the middle stratosphere are apparent in three time periods: 



1) Nov. 2000 - Apr. 2001; 2) Nov. 2001 - Dec. 2002; and 3) Oct. 2003 - Nov. 2004. The very 

large SPEs in Nov. 2000, Nov. 2001, and Oct. 2003, and the large SPE in Nov. 2003 drove most 

of these NO, increases because they occurred during the fall season (see Table I). The NH polar 

ozone signal (Fig. 14, middle) follows the NO, signal into the stratosphere and is anti-correlated 

with NO,. The NH polar temperature changes do not show the same correlation with ozone that 

was computed in the SH polar region. The correlation coefficient between temperature and 

ozone change in the NH polar stratosphere was computed to be less than 0.5 for pressures less 

than 200 hPa. 

The colored regions in Figure 14 indicate 95% statistical significance with the use of 

Student's t-test. Large regions of the computed SPE-caused NO, enhancements are statistically 

significant and the statistically significant NO, increases can extend from the mesosphere to the 

middle stratosphere (from 0.1 to -10 hPa; Fig. 14, top). As in the polar SH, the areas of 

statistically significant ozone changes are much smaller than those for NO, enhancements (Fig. 

14, middle). A summer SPE (July 2000) helped contribute to nearly four months (Jul. - Oct., 

2000) of statistically significant ozone decrease in the upper stratosphere. The furthest 

penetrating statistically significant ozone decrease occurred between Sep. 2001 and Jan. 2002, 

when the ozone signal followed the NO, enhancement from the lower mesosphere/upper 

stratosphere down to the middle stratosphere. The large SPE in Sep. 2001 and the two very large 

SPEs in Nov. 2001 contributed to most of this strong signal. A lesser statistically significant 

signal of ozone decrease was connected with the "Halloween storms" in late 2003, but the signal 

was in the mesosphere and did not extend beyond Dec. 2003. As in the SH, virtually none of the 

computed NH temperature changes are statistically significant (Fig. 14, bottom). 



5. SPE-caused Long-term Polar Atmospheric Changes in the 1963-2004 Period 

The very large SPEs in solar cycle 23 caused fairly substantial statistically significant 

polar NO, enhancements in both hemispheres in the period Jan. 1,2000 through Dec. 3 1,2004. 

Although the computed statistically significant ozone decreases covered much less of the domain 

in altitude and time than those computed for NO,, a few of the very large SPEs in solar cycle 23 

managed to create long-lasting statistically significant polar ozone signals. In general, the 

computed polar temperature changes were not statistically significant over the years 2000-2004. 

Our analysis will be extended in this section to include years 1963-2004. We will focus on a 

quantification of the long-term impact of SPEs on ozone and temperature. 

5.1 SPE-caused Temperature and Ozone Profile Changes 

Virtually no SPEs occurred in 1963-64, thus we focused on the WACCM3 output over 

the 40 year period 1965-2004, to determine if any signals in ozone and temperature were 

statistically significant. There were large and very large SPEs throughout the 40 year period, 

which included solar cycles 20-23. An annual zonal average SPE-caused ozone and temperature 

change for the polar SH latitude region 70-90's is shown in Figure 15 (middle and top, 

respectively) as the difference between the ensemble averages of simulations l(a,b,c,d) and 

l(w,x,y,z). The SPE-caused NO, production (in gigamoles) per year is shown in the bottom plot 

of Figure 15 to focus attention on any apparent correlations between SPEs and annually averaged 

ozone and temperature variations. The colored regions indicate a 95% statistical significance 

with the use of Student's t-test. Ozone variations up to +/- 10% and temperature variations up to 

+/- 2K are computed. The main conclusion from these analyses is that there is not much 



statistically significant atmospheric change from SPEs in the SH, when evaluating the annual 

average ozone and temperature variations. 

The NH model output was analyzed in a similar way (annual zonal average) and ozone 

and temperature change for the polar latitude region 70-90% are given in Figure 16 (middle and 

top, respectively). The computed ozone and temperature variations are smaller in the NH than 

the SH with ozone fluctuations of up to +/- 5% and temperature variations up to +/- 1K. The 

colored regions indicate a 95% statistical significance with the use of Student's t-test. A small 

statistically significant ozone change is computed in the NH in the middle to upper stratosphere 

for years 2000-2001 -2002 (slightly different altitudes for each year), probably caused by the 

large and very large SPEs which occurred in years 2000 (Jul. and Nov.) and 2001 (Sep. and two 

in Nov.). However, there are no computed statistically significant temperature changes. 

5.2 SPE-caused Total Ozone Changes 

A maximum polar ozone column decrease of about 1 to 4% has been computed in several 

previous two-dimensional modeling studies due to very large SPEs [e.g., Jackrnan et al., 1990, 

1995, 2000, 2005a,b; Reid et al., 1991; Jackman and Fleming, 20081. These earlier analyses 

were unable to reveal any SPE-caused observed polar ozone column depletion due to the 

substantial intra-seasonal and inter-annual variation in total ozone at high latitudes. We show the 

polar ozone column variations from the individual WACCM3 ensemble of simulations l(a,b,c,d) 

compared with observations in Figure 17 (top, 70-90's and bottom, 70-90°N). The observations 

were differenced with respect to an average of the two years, 1979 and 1980, to allow for any 

quasi-biennial influences. The simulations were differenced with respect to the ensemble average 

{ 1 (a,b,c,d)) of two years, 1979 and 1980. 



A special analysis of total ozone measurements was needed to derive polar total ozone: 

Following the methodology of Fioletov et al. [2002] , the gaps at various latitudes in the 

monthly-mean merged ozone data set [Stolarski and Frith, 2006) were interpolated in time for 

each latitude band as long as the nearest good measurement on either side of the missing point 

was within 3 months. The total ozone data were extrapolated in latitude by duplicating the 

northernmost (or southernmost) good measurement to the next missing poleward bin. This time 

interpolation was repeated and the extrapolation was redone in latitude until all the points were 

filled in. There were some artifacts at high latitudes during periods where the real data cut off 

occurred at - 40-45'; however, these were not very large. The interspersing of the data 

interpolated in time and latitude appeared to reduce the artifacts. 

The polar total ozone for 70-90's fiom WACCM3 with SPEs and observations show 

similar trend behavior and magnitude of interannual variability (Fig. 17, top). The polar total 

ozone for 70-90°N from WACCM3 and observations does indicate a similar trend between 

1979/1980 and 2004 (Fig. 17, bottom); however, WACCM3 simulated significantly higher total 

ozone in 1989 and in 1991 through 1995. Could the very large SPEs in Aug.-Sep.-Oct. 1989 

[see Table 1, Jackman et al., 20081 have contributed to the substantial change (decrease) from 

1988 to 1989 for the 70-90°N band? Given the modest predicted profile ozone decreases (<5%, 

Fig. 16), this seems unlikely. Also, there were not any very large SPEs in 199 1 - 1995, which 

may have contributed to the lower total ozone values in those years. The Mt. Pinatubo eruption 

occurred in 199 1 and likely contributed to lower total ozone levels in 199 1 and 1992, similar to 

the effect at mid-latitudes [e.g., Solomon et al., 19961. Mostly cooler winter and spring 

temperatures have also been linked to the observed reduced polar NH ozone values from 199 1 to 

1995 [Randel and Wu, 1999; p. 4.4, WMO, 20071. 



We next examined WACCM3 output to derive any statistically significant signal from 

SPEs in total polar ozone. For this analysis, we computed the annually averaged SPE-caused 

total ozone change from WACCM3 simulations by differencing the ensemble averages of 

simulations l(a,b,c,d) and l(w,x,y,z). These differences are compared in Figure 18 for the polar 

regions, 70-90"s (top) and 70-90°N (bottom). The thick solid line indicates the difference of the 

sinlulations and the light dashed line indicates the one sigma values for the base ensemble of 

simulations l(w,x,y,z). The SPE-caused total ozone change signal for most years is within one 

sigma of the average of the base simulations. A Student's t-test analysis indicates that the signal 

in 1966 for the NH is the only one that is statistically significant at the 95% level. Although 

there was a very large SPE in September 1966 [see Table 1, Jackman et al. 20081, the computed 

total ozone change was positive in 1966. Year 1966 had minimal halogen loading [WMO, 20071, 

thus an ozone depletion would be expected from solar protons rather than an ozone increase. 

Hence this positive total ozone change in 1966 is not likely related to SPEs. 

6. Conclusions 

WACCM3 has been used to study the long-term (>few months) constituent changes 

caused by SPEs over the 1963-2004 time period. The most pronounced atmospheric effects were 

caused by the very largest SPEs in this period and were concentrated in the polar regions. 

Substantial statistically significant signals in NO, were computed for years 2000, 2001, and 2003 

after very large SPEs and lasted for up to a year past the events. A large five-year average 

(2000-2004) statistically significant polar middle atmospheric NO, signal was calculated in both 

hemispheres for the latest solar maximum period. 



Only modest statistically significant signals in mesospheric and stratospheric ozone were 

computed for the same events and these signals lasted only a few months, at most. The 

statistically significant NH mesospheric ozone signal for years 2000-2004 appears to be mainly 

caused by SPE-enhanced HO,. The SPE-enhanced NO, is the primary cause of the computed 

stratospheric ozone change. Analysis of annually averaged WACCM3 output showed 

statistically significant stratospheric ozone signals of some note in the polar NH for years 2000- 

2002. Very small statistically significant stratospheric ozone signals were computed for the 

polar SH. An ozone increase connected with SPEs was found in the lower stratosphere and was 

driven by the enhanced production of C10N02 and BrON02, which reduced the halogen-caused 

ozone loss. However, this SPE-caused enhanced ozone was not statistically significant. The 

annually averaged polar temperature and total ozone variations connected with SPEs were also 

not statistically significant. 
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Table I .  Largest daily NO, production from solar proton events between 
Jan. 1, 1995 and Dec. 31,2004, given in chronological order. Only days with 
production greater than or equal to 0.4 gigamoles of NO, are shown. 

Date of SPE 
July 14, 2000 
July 15,2000 
November 9,2000 
November 10,2000 
September 25,2001 

Computed NOy Daily Production 
In Middle Atmosphere (~ i~amoles ' )  

1.3 
4.5 
3.6 
0.7 
1.4 

September 26,2001 
November 5.200 1 

November 24,2001 1 2.0 

1.3 
2.0 

November 6,200 1 
November 23.2001 

3 .O 
0.8 

April 2 1,2002 
April 22,2002 
October 28,2003 
October 29. 2003 

1 Table 2. Description of WACCM3 simulations / 

0.5 
0.4 
0.8 
3.9 

October 30, 2003 
November 3,2003 

Simulation / Number of I Time 1 SPEs 

0.9 
0.4 

' ~ i ~ a m o l e  = 6.02 x 1 0 ' ~  atoms and molecules 

designation 
1 (a, b, c, d) 

realizations 
4 

period 
1963-2004 

included 
Yes 



Figure Captions 

Figure 1. Daily column NOy production in gigamoles (6.02 X los2 molecules) as a function of 

time for Jan. 1, 1995 - Dec. 3 1,2004. 

Figure 2. Taken from Fig. 15 of Jackman et al. (2008). Left plot is an adaptation of Fig. 5a of 

Randall et al. (2001) showing Southern Hemisphere (SH) polar vortex HALOE NOx (ppbv) 

profiles in September/October for years 1991-2000. Right plot shows WACCM3 simulation 1(a) 

predicted SH polar vortex NOx (ppbv) profiles for the same periods. 

Figure 3. Annual mean of simulations l(w,x,y,z) for year 1996 -Left: NO, with contour 

intervals 0.01, 0.1, 1, 2, 4, 7, 10, 20, and 40 ppbv. Right: Ozone with contour intervals 0.1, 0.5, 

1,  2, 4, 6, 8, and 10 ppmv. 

Figure 4. Annual average of solar proton event-caused change: Difference between average of 

simulations l(a,b,c,d) and 1 (w,x,y,z) for year 1996. Left: NOy with contour intervals -20, -10, - 

5, 0, 5, 10, and 20%. Right: Ozone with contour intervals -5, -2, 0,2, and 5%. Colored regions 

indicate 95% statistical significance with Student's t-test. 

Figure 5. Annual mean of simulations 1 (w,x,y,z) for year 2000 - Left: NOy with contour 

intervals 0.01, 0.1, 1, 2, 4, 7, 10, 20, 40, 70, and 100 ppbv. Right: Ozone with contour intervals 

0.1,0.5, 1,2,4,6,  8,and 10ppmv. 



Figure 6. Annual average of changes caused by solar proton events for year 2000: Difference 

between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) for year 2000 - Left: NOy with contour 

intervals -20, -10, -5, 0, 5, 10, 20, 50, and 100%. Right: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 

Figure 7. Annual average of changes caused by solar proton events for year 2001: Difference 

between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) for year 200 1 - Left: NO, with contour 

intervals -20, -SO, -5, 0, 5, 10, 20, 50, and 100%. Riglzt: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 

Figure 8. Changes caused by solar proton events for year 2001. Difference between average of 

simulations l(a,b,c,d) and S(w,x,y,z) -Left, top: NO, with contour intervals -5, 0, 5, 10,20, and 

50%; Riglzt, top: Ozone with contour intervals -5,0, 5, 10, and 20%; Left, bottom: BrON02 with 

contour intervals -10, -5, 0, 5, 10, 20, and 50%; Riglzt, bottom: ClONO;! with contour intervals - 

10, -5, 0, 5, 10, and 20%. 

Figure 9. Annual average of changes caused by solar proton events for year 2003: Difference 

between average of simulations l(a,b,c,d) and 1 (w,x,y,z) for year 2003 -Left: NO, with contour 

intervals -20, -10, -5, 0, 5, 10, 20, 50, and 100%. Right: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 



Figure 10. Solar proton event-caused change for average of years 2000-2004: Difference 

between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) - Left: shows NO, with contour 

intervals 0, 5, 10, 20, 50, and 100%; Riglzt: Ozone with contour intervals -5, -2, 0,2, and 5%. 

Colored regions indicate 95% statistical significance with Student's t-test. 

Figure 11. Solar proton event-caused change for July 2000 to June 2001 in the SH polar latitude 

interval 70-90's (Left) and in the NH polar latitude interval 70-90°N (Right): Difference 

between average of simulations I (a,b,c,d) and 1 (w,x,y,z) for NO, with contour intervals -20, - 10, 

0, 10, 20, 50, 100, 200, 500, and 1000% (Topplots); and ozone with contour intervals -20, -1 0, - 

5, -2, 0, 2, 5, 10, and 20% (Bottomplots). 

Figure 12. Solar proton event-caused change for July 2000 to June 2001 in the SH polar latitude 

interval 70-90's: Difference between average of simulations I (a,b,c,d) and 1 (w,x,y,z) - for 

BrON02 with contour intervals -50, -20, -1 0, 0, 10,20, 50, 100, and 200% (Top); CIONOz with 

contour intervals -50, -20, -10, 0, 10, 20, 50, 100, and 200% (Middle); and ozone with contour 

intervals -20, -10, -5, -2,0,2, 5, 10, and 20% (Bottom). 

Figure 13. Solar proton event-caused change for the five years 2000-2004 in the SH polar 

latitude interval 70-90's: Difference between simulations 1 (a,b,c,d) and 1 (w,x,y,z). Colored 

regions indicate 95% statistical significance with the use of Student's t-test. - Top: NO, with 

contour intervals -20, -10, 0, 10,20, 50, and 100%. Middle: Ozone with contour intervals -20, - 



10, -5, -2, 0, 2, 5, 10, and 20%. Bottom: Temperature with contour intervals -7, -4, -2, -1, 0, 1,2, 

4, and 7K. 

Figure 14. Solar proton event-caused change for the five years 2000-2004 in the NH polar 

latitude interval 70-90°N: Difference between simulations 1 (a,b,c,d) and 1 (w,x,y,z). Colored 

regions indicate 95% statistical significance with the use of Student's t-test. - Top: NO, with 

contour intervals -20, -1 0, 0, 10, 20, 50, and 100%. Middle: Ozone with contour intervals -20, - 

10, -5, -2, 0, 2, 5, 10, and 20%. Bottom: Temperature with contour intervals -7, -4, -2, -1, 0, l , 2 ,  

4, and 7K. 

Figure 15. Solar proton event-caused change for the forty years 1965 through 2004 in the SH 

polar latitude interval 70-90"s: Difference between simulations 1 (a,b,c,d) and I(w,x,y,z). 

Colored regions indicate 95% statistical significance with the use of Student's t-test. - Top: 

Temperature with contour intervals -2, - 1, 0, 1, and 2 I(, Middle: Ozone with contour intervals - 

10, -5, -2,0,2, 5, and 10%. Bottom: NO, production per year (GigaMoles, GM) by solar proton 

events. 

Figure 16. Solar proton event-caused change for the forty years 1965 through 2004 in the NH 

polar latitude interval 70-90°N: Difference between simulations 1 (a,b,c,d) and l(w,x,y,z). 

Colored regions indicate 95% statistical significance with the use of Student's t-test. - Top: 

Temperature with contour intervals -2, -1, 0, 1, and 2 K. Middle: Ozone with contour intervals - 



10, -5, -2, 0,2, 5, and 10%. Bottom: NO, production per year (GigaMoles, GM) by solar proton 

events. 

Figure 17. Total ozone change for the forty years 1965 though 2004 in the SH polar latitude 

interval 70-90's (Top) and the NH polar latitude interval 70-90°N (Bottom). The solid lines 

(black, red, green, blue) indicate the individual WACCM3 simulation l (a,b,c,d) values minus the 

average from 1979-1980.. The asterisks indicate observed total ozone levels (explained in 

section 5.2) minus the observed average for 1979-1980. 

Figure 18. Solar proton event-caused change in annually averaged total ozone for the forty 

years 1965 through 2004 in the SH polar latitude interval 70-90's (Top) and the NH polar 

latitude interval 70-90°N (Bottom). The thick solid line indicates the difference between the 

average of simulations l(a,b,c,d) and l(w,x,y,z). The light dashed lines indicate the one sigma 

values for the base simulations I (w,x,y,z). 



Figures 

Figure 1. Daily column NO, production in gigamoles (6.02 X molecules) as a function of 

time for Jan. 1, 1995 - Dec. 3 1,2004. 
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Figure 2. Taken from Fig. 15 of Jackman et al. (2008). Left plot is an adaptation of Fig. 5a of 

Randall et al. (2001) showing Southern Hemisphere (SH) polar vortex HALOE NO, (ppbv) 

profiles in September/October for years 199 1-2000. Right plot shows WACCM3 simulation 1 (a) 

predicted SH polar vortex NOx (ppbv) profiles for the same periods. 



Latitude Latitude 

Figure 3. Annual mean of simulations 1 (w,x,y,z) for year 1996 - Left: NOy with contour 

intervals 0.0 1, 0.1, 1, 2, 4, 7, 10, 20, and 40 ppbv. Right: Ozone with contour intervals 0.1, 0.5, 

l , 2 ,  4, 6, 8, and 10 ppmv. 

Latitude Latlfude 

Figure 4. Annual average of solar proton event-caused change: Difference between average of 

simulations I (a,b,c,d) and 1 (w,x,y,z) for year 1996. Left: NOy with contour intervals -20, - 10, - 

5, 0, 5, 10, and 20%. Riglzt: Ozone with contour intervals -5, -2, 0,2, and 5%. Colored regions 

indicate 95% statistical significance with Student's t-test. 
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Figure 5. Annual mean of simulations I (w,x,y,z) for year 2000 - Left: NOy with contour 

intervals 0.0 1, 0.1, 1, 2,4, 7, 10, 20, 40, 70, and 100 ppbv. Right: Ozone with contour intervals 

0.1, 0.5, I, 2,4, 6, 8, and IOppmv. 
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Figure 6. Annual average of changes caused by solar proton events for year 2000: Difference 

between average of simulations l(a,b,c,d) and l(w,x,y,z) for year 2000 - Left: NOy with contour 

intervals -20, -10, -5, 0, 5, 10, 20, 50, and 100%. Right: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 
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Figure 7. Annual average of changes caused by solar proton events for year 2001 : Difference 

between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) for year 2001 - Left: NOy with contour 

intervals -20, -10, -5, 0, 5, 10, 20, 50, and 100%. Right: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 
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Figure 8. Changes caused by solar proton events for year 2001. Difference between average of 

simulations I(a,b,c,d) and l(w,x,y,z) -Left, top: NO, with contour intervals -5, 0, 5, 10,20, and 

50%; Right, top: Ozone with contour intervals -5,0, 5, 10, and 20%; Left, bottom: BrON02 with 

contour intervals -10, -5, 0, 5, 10,20, and 50%; Right, bottom: CION02 with contour intervals - 

10, -5, 0, 5,  10, and 20%. 
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Figure 9. Annual average of changes caused by solar proton events for year 2003: Difference 

between average of simulations 1 (a,b,c,d) and I(w,x,y,z) for year 2003 -Left: NO, with contour 

intervals -20, -10, -5, 0, 5, 10, 20, 50, and 100%. Right: Ozone with contour intervals -10, -5, -2, 

0, 2, and 5%. Colored regions indicate 95% statistical significance with Student's t-test. 
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Figure 10. Solar proton event-caused change for average of years 2000-2004: Difference 

between average of simulations I (a,b,c,d) and l(w,x,y,z) - Left: shows NO, with contour 

intervals 0, 5, 10, 20, 50, and 100%; Riglzt: Ozone with contour intervals -5, -2, 0, 2, and 5%. 

Colored regions indicate 95% statistical significance with Student's t-test. 
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Figure 11. Solar proton event-caused change for July 2000 to June 2001 in the SH polar latitude 

interval 70-90's (Left) and in the NH polar latitude interval 70-90°N (Right): Difference 

between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) for NO, with contour intervals -20, - 10, 

0, 10, 20, 50, 100, 200, 500, and 1000% (Top plots); and ozone with contour intervals -20, - 10, - 

5, -2, 0, 2, 5, 10, and 20% (Bottom plots). 
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Figure 12. Solar proton event-caused change for July 2000 to June 2001 in the SH polar latitude 

interval 70-90's: Difference between average of simulations 1 (a,b,c,d) and 1 (w,x,y,z) - for 

BrON02 with contour intervals -50, -20, - 10, 0, 10, 20, 50, 100, and 200% (Top); ClONOz with 

contour intervals -50, -20, -10, 0, 10,20, 50, 100, and 200% (Middle); and ozone with contour 

intervals -20, - 10, -5, -2,0,2, 5, 10, and 20% (Bottom). 
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Figure 13. Solar proton event-caused change for the five years 2000-2004 in the SH polar 

latitude interval 70-90"s: Difference between simulations 1 (a,b,c,d) and 1 (w,x,y,z). Colored 

regions indicate 95% statistical significance with the use of Student's t-test. - Top: NO, with 

contour intervals -20, -1 0, 0, 10,20, 50, and 100%. Middle: Ozone with contour intervals -20, - 

10, -5, -2,0,2, 5, 10, and 20%. Bottom: Temperature with contour intervals -7, -4, -2, - l ,0 ,  I, 2, 

4, and 7K. 
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Figure 14. Solar proton event-caused change for the five years 2000-2004 in the NH polar 

latitude interval 70-90°N: Difference between simulations 1 (a,b,c,d) and 1 (w,x,y,z). Colored 

regions indicate 95% statistical significance with the use of Student's t-test. - Top: NO, with 

contour intervals -20, -10, 0, 10,20, 50, and 100%. Middle: Ozone with contour intervals -20, - 

10, -5, -2,0, 2, 5, 10, and 20%. Bottom: Temperature with contour intervals -7, -4, -2, -1, 0, 1,2, 

4, and 7K. 
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Figure 15. Solar proton event-caused change for the forty years 1965 through 2004 in the SH 

polar latitude interval 70-90's: Difference between simulations 1 (a,b,c,d) and l(w,x,y,z). 

Colored regions indicate 95% statistical significance with the use of Student's t-test. - Top: 

Temperature with contour intervals -2, - 1, 0, 1, and 2 I(. Middle: Ozone with contour intervals - 

10, -5, -2,0,2, 5 ,  and 10%. Bottom: NO, production per year (GigaMoles, GM) by solar proton 

events. 
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Figure 16. Solar proton event-caused change for the forty years 1965 through 2004 in the NH 

polar latitude interval 70-90°N: Difference between simulations l(a,b,c,d) and l(w,x,y,z). 

Colored regions indicate 95% statistical significance with the use of Student's t-test. - Top: 

Temperature with contour intervals -2, - 1, 0, 1, and 2 K. Middle: Ozone with contour intervals - 

10, -5, -2,0,2,5,  and 10%. Bottom: NO, production per year (GigaMoles, GM) by solar proton 

events. 
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Figure 17. Total ozone change for the forty years 1965 through 2004 in the SH polar latitude 

interval 70-90"s (Top) and the NH polar latitude interval 70-90°N (Bottom). The solid lines 

(black, red, green, blue) indicate the individual WACCM3 simulation l(a,b,c,d) values minus the 

average from 1979- 1980.. The asterisks indicate observed total ozone levels (explained in 

section 5.2) minus the observed average for 1 979- 1 980. 
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Figure 18. Solar proton event-caused change in annually averaged total ozone for the forty 

years 1965 through 2004 in the SH polar latitude interval 70-90's (Top) and the NH polar 

latitude interval 70-90°N (Bottom). The thick solid line indicates the difference between the 

average of simulations l(a,b,c,d) and l(w,x,y,z). The light dashed lines indicate the one sigma 

values for the base simulations 1 (w,x,y,z). 
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