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THE ANALYSIS OF IMAGE SEGMENTATIOIV HIERARCHIES WITH A 

GRAPH-BASED KXOWLEDGE DISCOVERY SYSTELM 

This paper describes approaches to the integration of the Subdue graph-based 

knowledge discovery system with image segmentation hierarchies generated by the 

RMSEG algorithm and initial results from the application of the combined system to 

image data analysis. 

Abstract: Currently available pixel-based analysis techniques do not effectively 

extract the information content from the increasingly available high spatial rcsolutioi~ 

remotely sensed imagery data. A general consensus is that object-based image analysis 

(OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage 

process; image segmentation followed by an analysis of the segmented objects. We are 

exploring an approach to OBIA in which hierarchical image segmentations provided by 

the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC 

are analyzed by the Subdue graph-based knowledge-discovery system developed by a 

team at Washington State University. In this paper we discuss our initial approach to 

representing the RHSEG-produced hierarchical image segmentations in a graphical form 

understandable by Subdue, and provide results on real and simulated data. We also 

discuss planned improvements designed to more effectively and completely convcy the 

hierarchical segmentation information to Subdue and to improve processing efficiency. 



1 .0 INTRODUCTIOU 

Currently available image analysis tcchniqucs do not effectively extract the 

infomation content from the increasingly available high spatial resolution remotely 

sensed imagery data. High spatial resolution imagery can resolve individual objects such 

as man-made structures and even individual large trees. Ilowcver, several studies have 

shown that most currently available pixel-bascd analysis tcchniqucs do not perform well 

on this type of data. The field of object-based image analysis (OBIA) has arisen in recent 

years to address the need to move beyond pixel-based analysis. 

OBIA relics on image segmentation as a starling point. The quality of this initial 

image segmentation strongly influences the effectiveness of the ensuing object-based 

analysis. We have chosen to use the Recursive Hierarchical Segmentation (RIISEG) 

software (Tilton, 2008) developed internally at NASA GSFC as our image segmentation 

approach. HISEG is an cxeellent choicc because of three key factors: (i) RHSEG 

produces image segmentations with high spatial fidelity, (ii) RHSEG automatically 

groups spatially connected region objects into region classes: and (iii) RISEG 

automatically produces a hierarchical set of image segmentations. 

An approach capable of discovering patterns in the scgmcnted image data is needed 

for analyzing a hierarchical sct of image segmentations, such as thc Subdue graph-based 

knowledge-discovery software (Cook and Holder, 2000). Subdue was developed by a 

team at Washington State University, and is designed to discover patterns in graph-based 

structural databases. Subdtic has been successfully applied in a number of areas, 

including bioinformatics, web structure mining, counter-terrorism, social network 



analysis, aviation and geology (I-Ioldcr, et ul., 2005; Rakshan, et al., 2004; Joyner, et al.. 

2001). We hypothesize that the capabilities of RI-ISEG and Subdue can be combined to 

provide insightful analysis of remotely sensed data. 

We have made some initial steps in translating image segmentations into relational 

graphs for analysis by Subdue, and achieved some limited data analysis success. The 

grouping of rcgion objects into regions classes, as provided by RHSEG, has proved 

important in this translation. Our experience has also made clear the importance of 

enabling Subdue to utilize region object size and region object neighbor relationship 

information. In addition, full automation of the analysis also requires an image to be 

segmented at an appropriate level of spatial detail that can he selected from the RHSEG 

segmentation hierarchy. Towards this end, we discuss an approach designed to enable 

Subdue to directly utilize the RHSEG segmentation hierarchy information, obviating any 

need to preselect a level of segmentation spatial detail. 

2.0 BACKGROCND 

This section introduces RHSEG and Subdue, along with a preliminary approach for 

converting o~itputs from RHSEG to the graphical representation required by Subdue. 

2.1 RHSEG 

RHSEG is an approximation to the HSEG hierarchical image segmentation algorithm. 

HSEG is a hybrid of hierarchical step-wise optimization (HSWO) and constrained 

spectral clustering that produces a hierarchical set of image segmentations. HSWO is an 

lteratlve approach to Ieglon growlng segmentatron in u h ~ c h  the optimal Image 



segmentation is found at Nn region objects, given a segmentation at N,y+l region objects 

(Beaulieu and Goldberg, 1989). 

HSWO produces hierarchical segmentations that are useful in many applications. 

However, with the addition of constrained spectral clustering, HSEG produces 

segmentations that capture with greater fidelity the spatial detail of the segmented 

images, while describing the imagc data compactly in terms of region classes, which are 

groups of region objectst. 

HSEG's addition of constrained spectral clustering makes it a computationally 

intensive algorithm for all but the smallest of images. To counteract this, a 

computationally efficient recursive approximation of HSEG (called RIISEG) was 

devised. Further improvements in processing speed are obtained through a parallel 

impletnentation of RIISEG. The liSEG and RtISEG algorithms, along with a coarsc- 

grained parallel implementation of RIISEG on MIMD computer clusters. arc described in 

detail in Tilton (2007). 

RHSEG recursively subdivides two-dimensional image data into four equal-sized 

subsections until a processing window containing no more than 4000 pixels is obtained. 

(For three-dimensional imagc volumes the data is divided into eight equal-sized 

volumes.) The HSEG algorithm is executed on each processing window subsection until 

a preset number of regions is obtained and the results are passed up to the previous level 

of recursion. The f-ISEG algorithm is initialized with thc results from the deeper level of 

recursion and again run until a preset number of regions is obtained. This continues until 

t\ region object is a set of spatially contiguous image pixels. A region class is a group of one or more 
spatially disjoint region objects. 



the recursion is completcd. For all but the deepest level of recursion, a blcl~ding algorithm 

is performed on the HSEG results in which certain pixels are split out from their original 

region assignment and remerged into a more appropriate region (Tilton, 2005). This 

prevents processing window artifacts in which region boundaries appear along processing 

window seams even though the image pixels across the seams are very similar. A 

hierarchical set of image segmentation is then produced *om a final run of 1,ZSEG after 

the blending algorithm is executed on the initial run of HSEG (down to a preset number 

of regions) after the recursion is completed and the data set is being processed in its 

entirety. 

I~ISEG controls the relative priority given to mcrgcs of spatially adjacent regions 

versus merges of spatially non-adjacent regions (spcctral clustering) through the input 

parameter This parameter, which can vary from 0.0 to 1 .0? controls the relative 

importance of spatially adjacent and spatially non-adjacent region merges. When S+, = 

0.0, spatially non-adjacent region merges are not allowed and HSEG becomes equivalent 

to HSWO. With Sbtrhi = 1.0, merges betwccn spatially adjacent and spatially non-adjacent 

rcgions are given equal priority. For values of S,,),, between 0.0 and 1 .O, spatially 

adjacent merges are glven prlorlty over spatially non-adjacent merges by a factor of 

1 .0/.5',~,eh,. Appropriate values for S,$,,,, depend on the application, but usually range from 

0.1 to 1.0. 

A variety of region dissimilarity criteria may be used with HSWO and HSEG (see 

Tilton (2008) for a complete list). In our work with Subdue, we found the "square root of 



band sum mean squared error" (BSME') criterion to be most appropriate. This crltcrion 

is defined as: 

where ni (nj) is the number of pixel in region X; (X;), and /rib ( , q h )  is the mean of region X. 

(4) for spectral band h. 

A key factor in selecting RHSEG for providing region objects for analysis by Subdue 

is the fidelity with which RHSEG renders region objects versus other available image 

segmentation programs. This fidelity stems from the manor in which spectral clustering is 

tightly bound with region growing in the HSEG algorithm. Other image segmentation 

programs may have a provision for performing spectral clustering on a final set of region 

objects, but EISEG is the only algorithm that tightly intertwines spectral clustering with 

region growing image segmentation. The difference that this makes can be demonstrated 

by comparing an image segmentation result from RlfSEG with a result produced by 

HSWO. Figs. la, lb  and l c  show, rcspcctively, a true color rendition of a 256x256 

portion of an lkonos imagez, the region mean imagc from the RHSEG result, and the 

region mean image from the HSWO results. RHSEG and HSWO were both rnn with the 

 dissimilarity criterion until a region merging threshold of 10.0 was reached. 

RFISEG uscd .YiiXh, = 0.25. 

The region object classification provided by RHSEG is also needed for input to 

Subduc because the rcgion class provides a node label which Subdue needs to determine 

interesting associations betwecn neighboring rcgion objects. 

This is a portion of an tkonos image obtained May 17,2000 from over Baltimore; MD. USA 



(a) (b) (c) 

Fig. I .  (a) A true color rendition of a 256x256 pixel portion of an Ikonos data set. (h) The 

region mean image from an RIISEG segmentation with Snvh, 0.25 and maximum merge 

threshold = 10.0. (c) The region mean image from an HSWO segmentation with 

maximum merge threshold - 10.0. 

Another important factor in selecting RI-ISEG for use with Subdue is that RIISEG is 

one of very few programs that readily produce a hierarchical set of image segmentations. 

Of course, FISWO does this. Also, the segmentation program provided with the 

commercially available Defi niens Developer software product can also provide a 

hierarchical set of image segmentations (htlp:liwww.definienr.com), but this commercial 

product is expensive, is somewhat cumbersome to use, and includes a large amount of 

software for rule-based image classification that becomes just overhead when one is just 

interested in a hierarchical segmentation result. Ho\vever, neither HSWO nor Definiens 

Developer provides image segmentation from tightly intertwined spectral clustering and 

region growing. 

A segmentation program that produces a hicrarchical set of segmentations is important 

for knowledge discovery because one generally does not know at what level of 



segmentation detail a particular type of region object will bc well delincated. While our 

initial approaches for combining RlISEG and Subdue do not effectively exploit the 

segmentation hierarchy, we will propose in a later section an approach to enabling 

Subdue to discover the appropriate level in the scgmcntation hierarchy at which to extract 

meaningful patterns and relationships. 

2.2 SUBDUE 

Numerous approaches have been devcloped for discovering concepts in linear, 

attribute-value databases (Frawley, et a/., 1992). Although much of the data collected 

today has an explicit or implicit structural component (e.g., spatial or temporal), only 

recently have discovery systems been designed to handle this type of data. Current data 

mining research focuses primarily on algorithms to discover sets of attributes that can 

discriminate data entities into classes, such as shopping or banking trends for a 

particular demographic group. These approaches experience difficulty when key 

concepts involve relationships betu,een the data points. In contrast, we are developing 

data mining teehniqucs to discover patterns consisting of complex relationships 

betwccn entities. 

Cook and Holder (2000) introduced a method for discovering substructurcs in 

structural databases impicincntcd in the Subdue system. In contrast with alternative 

approaches, Subdue is devised for general-purpose automated discovery. concept 

learning, and hierarchical clustering. IIence, the method can be applied to many structural 

domains. 



Subdue accepts as input directed or undirected graphs with labeled vertices (nodes) 

and edges (links), and outputs graphs representing the discovered pattern or learned 

concept. Formally, Subdue uses a labeled graph G = (V,E,L) as both input and output, 

where V = {v,, v?, . .., v,,) is a set of vertices, E = ((v;, vj) I v,, v, t V ) is a set of edges, 

and L is a set of labels that can appear on vertices and edges. The graph G can contain 

directed edges, undirected edges, self-edges, and multi-edges. The input to Subdue can 

consist of one large graph or a collection of individual graphs. and in the case of 

supervised learning, the individual graphs are classified as positive or negative examples. 

As an unsupervised algorithm, Subduc searches for a substructure, or subgraph of the 

input graph, that best compresses the input graph. Subduc uses a variant of beam search 

for its main search algorithm. A substructure in Subdue consists of a subgraph definition 

and all its occurrences throughout the graph. 

Subdue uses a polynomial-time beam search for its discovery algorithm, as 

summarized in Fig. 2. The initial state of the search is the set of substructures consisting 

of all uniquely-labeled vertices. Search progresses by applying the ExtendSubstructure 

operator to each substructure in the current state. As its name suggests, it extends a 

substructure in all possible ways by a single edge and a vertex, or by only a single edge if 

both vertices are already in the subgraph. The resulting new substructures are ordered 

based on their compression (or solnetimes referred to as value) as calculated using the 

MDL principle describcd below, and the top substructures (as determined by the beam) 

remain on the queue for further expansion. 



Search tcrminatcs upon reaching a limit on the number of substructures extended, or 

upon exhaustion of the search space. Once the search terminates and Subdue returns the 

list of bcst substructures, the graph can be comprcssed using the bcst substructure. The 

compression proecdure replaces all instances of the substructurc in the input graph by 

single vertices, which represent thc substructurc delinition. Incoming and outgoing edges 

to and from the replaced instances will point to or originate from the new vertex that 

rcpresents the instance. The Subdue algorithm can be iterated invoked again on this 

compressed graph. 

Subdue's search is guided by the Minimum Description Length (MDL) (Cook and 

Holder, 1994) principle formalized in (2),  where DL(L(S) is the description length of 

substructure S being evaluated. DI>(G!S) is the description length of thc graph as 

compressed by the substructure, and DL(G) is the description length of the original graph. 

The best substructure is the one that minimizes this compression ratio: 

As an example, Fig. 3 shows patterns that Subdue discovers in an example input graph 

and a compressed vcrsion of the graph. 

To allow slight variations between instances of a discovered pattern (as is the case in 

Fig. 3), Subdue applies an inexact graph match between the substructure definition and 

potential instanccs. Because instances of a subslructure can appear in different forms 

throughout the database, Subdue computes the graph edit distance betwecn two graphs 



and considers the substructure lnstance to be a match tf the distance is less than a pre- 

defined threshold (0 for exact matches) (Cook and Holder, 1994). 

SuBouE(graph G, int Beam, int Limit ) 

queue Q = {v I v has a unique label in G) 

bestsub = first substructure in Q 

repeat 

newQ = 

for each S in Q 

newsubs = ExtendSubstruture(S) 

Evaluate(newSubs) 

newQ = newQ U newsubs mod Beam 

Limit = Limit - I 
If best t Q better than bestsub 

then bestsub = best substructure in Q 

Q = newQ 

until Q is empty or Limit c= 0 

return bestsub 

Fig. 2. Subdue's discovery algorithm. 

Fig. 3. An example of Subdue's 

substructure discovery capability. The 

figure shows the discovcrcd pattern (Sl) 

from the original graph, the substructure 

found during the second iteration (Sz), and 

the final graph compressed using 

substructures SI and Sz. 

2 3 C O ~ V E R S I O ~  OF RHSEG OUTPUT TO GRAPH FORMAT 

Before significant cxperimcnts could be performed on image data sets of any 

s~gn~ficant sve. a computer program had to be dev~sed to convert outputs from RHSEG 

to the graphical representation requ~red by Subdue. An existing RHSEG utility program, 

called "fcaturc - extract", was augmcntcd to add an option to output a Subdue-compatible 

Input graph. Eventually thls program was further augmentcd to order the RliSEG rcglon 

objects by sizc (largest to smallest) and drop out from consideration region objects 

smaller than a specified sizc (number of p~xcls). The only information conveyed from the 

RHSEG segmentation output to the Subdue input graph was the region class label fot 



each region object and whether or not a region object was spatially adjacent (linked) to 

another region object. This was done for just one sclectcd level from the segmentation 

hierarchy. The Subdue input graph consisted of a list of graph vertices (rcgion objects) 

labeled by the rcgion class label and a list of undirected edges specifying which region 

objects were linked to what other region object. 

3.0 INITIAL RESULTS 

Initial experiments combining RHSEG and Subdue were performed on a 768x768 

pixel section of Ikonos data from over the center of Baltimore, MD. A true color 

rendition of this data set is displayed in Fig. 4a, and a hand labeling of the scene in terms 

of generalized land coveriland use classes is displayed in Fig. 4c. The RHSEG 

segmentation result selected to use for testing the RHSEGiSnbdue interface provided by 

the feature-extract program is displayed in Fig. 4b. Our hope was that Subdue would find 

significant subgraphs out of thc graphical representation of the RHSEG segmentation 

(Fig, 4b) corresponding to the hand labeled land coverlland use map (Fig. 4c). 

Fig. 5 highlights in red the eight most significant subgraphs discovered by Subdue 

from the RHSEG segmentation displayed in Fig. 4b. While there is no clear 

correspondence between the first seven subgraphs and the sought-for generalized land 

coveriland use classes), the eighth most significant subgraph corresponds closely to the 

"Parks" class delineated in Fig. 4c. (NOTE: Thc RIlSEG region classes mentioned in Fig. 

5 do not have a one-to-one correspondence to the land covcrlland use classcs in Fig. 4c 

and Table I.) 



(a) (b) (c) 

Fig. 4. (a) A true color rendition of a 768x768 pixel section of Ikonos data from the 

harbor and Patterson Park area of Baltimore, MU. (b) The RHSEG segmentation result 

used for testing the RHSEGlSubdue interface. The BSME'' dissimilarity criterion was 

employed with Sic8h, = 0.25. This segmentation has 11 region classcs and 38,773 region 

objects. (c) A land usciland cover class hand labeling of the lkonos scene in terms of 

generalized land use! land covcr labels (see Table I for color key). 

Table I. Color key for land uselland cover class labeling of Baltimore, MD Ikonos scene 

(Applies to Fig. 4c only.) 

Class f olor Color Clacs Clas  Color 



1 : 4-5-9 2: 3-2-4 4: 6-7 8: 6-8 

Fig. 5. A selection from the eight most significant subgraphs found by Subdue in 

analyzing the RHSEG segmentation displayed in Fig. 4b. The image area covered by the 

region objects participating in instances of these subgraphs are highlighted in red. Each 

subgraph is labeled by (order of significance):(region class relationship detected). (The 3: 

4-5, 5:5-9,6:4-9 and 7: 3-5 cases are not shown, but look similar to thc 2 " b o s t  

significant suhgraph result.) 

Subdue consumed a great deal of computer processing time producing this result: 

about 93 hours on a 2.33 GHz computer. The Subdue input graph is quite large, with 

38,773 vertices. However, we discovered that Subdue produced nearly identical results 

with an input graph in which all region object less than four pixels in size were dropped 

out, resulting in an input graph of 1733 1 vertices. Subdue consumed about 8.3 hours of 

computer time processing this input graph, a speed-up of over 11 times (we will later 

discuss how Subdue's processing time can be significantly further reduced). 

In a completely different applicatiol~ of Subdue, we have found that Subdue can 

recognize certain noise patterns in one-look SAR imagery. Fig. 6a shows a 1024x1 024 

pixel subsectiol~ of a TerraSAR-X image from DLR (German Aerospace Center). The 

full image may be viewed at htto:~~~v~~~w.dlr,dc~cn!Dcsktoi,Dcfa~ilt.asux~tabid- 



4219!6774 read-95 19~ealiew-1~ealIerv read-Imaee. 1.3575;. This image is of a region in 

the south Russian Steppes about 500 kilometers northeast of the Black Sea and about 50 

kilometers west of Volgograd. Fig. 6b shows a 10 region class segmentation of this image 

produced by Rt-ISEG. Fig. 6c highlights the image areas covered by instanccs of the sixth 

most significant subgraph recognized by Subdue. These areas eoncspond to the darker 

colored fields in Fig. 6a represented by a SAR noise pattern represented in the RHSEG 

segmentation as turquoise regions next to purple regions. 

(a) (b) (c) 

Fig. 6. (a) A section of TenaSAR-X imagery data. (b) Ten region class segmentation 

produced by RFISEG. (c) The image areas covered by instances of the sixth most 

significant subgraph discovered by Subdue. 

The above tantalizing but inconclusive results led us to step back and think about how 

we could clarify the situation. We decided to put together a simulated segmentation result 

to test the behavior of Subdue run with different parameter settings. The simulated 

segmentation, displayed in Fig.7a: combines idealized segmentations of a residential area 

(most of the lower left quadrant), an apartment complex (most of the upper left quadrant), 

an industrial park (the upper right quadrant) and recreational parks (inserted in the 



apartment complex and residcntial quadrants) with a scction of an actual segmentation of 

SAR data (lowcr right quadrant). 

We performed out initial run with Subdue with the same parameters used in our 

previous runs discussed above. The three most significant or highest-valued suhgraphs 

discovered by Subdue are displayed as the blacked out arcas in Figs. 7b, 7c and 7d. The 

most significant suhgraph finds portions of three land use classes: apartment complex, 

residential and parks. The sccond most significant subgraph finds most of the SAR 

quadrant, The third most significant subgraph finds portions of two land use classes: 

residential and parks. 

(a) (h) (c) (d) 

Fig. 7. (a) A simulated image segmentation (see text). (b) Most significant sub-graph, (c) 

second most significant subgraph, and (d) third most significant subgraph from Subdue. 

The image area covered by the region objccts participating in instances of these 

subgraphs is blacked out. 

What we notice about these three most significant subgraphs is they arc all two-vertex 

subgraphs. The first is a grass-roof suhgraph, the second is a subgraph linking t l~e  two 

SAR classes, and the third is a grass-trees suhgraph. The second thing we noticc is that 

each rcgion object is allowed to participate in only one subgraph instance. Thus, in Fig. 



7b, for each one grass region objcct only one adjacent roof objcct is blacked out. This is 

also why all SAR region objects are not blacked out in Fig. 7c. The third thing we notice 

is that the two apparent SAR subregions (upper left vs. lower right) are not distinguished. 

We note that one SAR subregion (upper left) consists primarily of a large orange region 

object containing many slnall purple region objects. Conversely, the other SAR subregion 

(lower right) consists primarily of a large purple region object containing many small 

orange region objects. We will discuss in the following "improvements" section how the 

last problem can he addressed, but report on a simple remedy for the first two problems 

here. 

Noting that the concepts of apartment complex, residential area, industrial park and 

recreational park involve more than a two-vertex graph, we decided to rerun Subdue on 

the sanle input graph with the requirement that only subgraphs with at least five vertices 

be considered. We also turned on the Subdue option to report all subgraph instances 

instead of limiting a region object to participate in only one subgraph instance. The 

results from this run of Subdue are displayed in Fig. 8. 



Fig. 8. (a) A simulated image segmentation (samc as Fig. 7a). (b) Most significant sub- 

graph, (c) second most significant subgraph, and (d) third most significant subgraph from 

Subdue with at least fivc vertices. 

The most significant subgraph discovered by Subdue in this second analysis of the 

simi~latcd data is a grass region object linked to a roof region object, and three bare soil 

region objects. The area covered by all instances of this subgraph is thc center of both 

parks (Fig. 8b). Since all subgraph instances are taken into account, all three roof region 

objccts in these park sections are blacked out instead of just one. 

The second most significant subgraph discovered by Subdue in this second analysis is 

a grass region object linked to an asphalt region object and also linked to a tree region 

object and two roof region objects, This subgraph pattern occurs both in the residential 

area and in the lower right portion of thc parks arca. The area blacked out also extends to 

the asphalt arcas in the apartment complex and industrial park because the asphalt area is 

just one large region object. Again, all related roof region objects arc blacked out since 

all subgraph instances are taken into account. 

The third most significant suhgraph discovered by Subdue in this second analysis is a 

grass region object linked to a tree region object and also linked to three roof objects. The 

areas blacked out in Fig. 8d correspond precisely to thc residential area sans the 

roadldriveway network. Again, all roof objects in the residential area are blacked out 

because all subgraph instances are considercd. 

These encouraging results lead us to the next section, in which planned additional 

improvements to Subdue and the RHSEGISubdue interface arc discussed. 



4.0 PLANNED IMPROVEMENTS TO RHSEG, SUBDUE AND THEIR INTERFACE 

The improvements to RHSEG, Subdue and their interface that we plan to perform can 

be categorized as follows: (i) ~nodifications in how the RHSEG segmentation is translated 

into the Subdue input graph (section 4.1 below), (ii) improvements in Subdue processing 

efficiency (section 4.2 below), and (iii) augmentation of Subdue to input and utilize 

additional information describing the relationships behveen region objects in the RHSEG 

segmentations (section 4.3 below). 

4.1 EXABI~ING SUBDUE TO UTIL.IZE THE RHSEG 

SEGMENTATION HIERARCHY INFORMATIOX 

We have noted that RHSEG produces a hierarchical set of image segmentations, So 

far we have not exploited this capability except for manually inspecting the hierarchical 

set of image scgmentations and selecting the segmentation for further analysis from the 

hierarchical level that bcst distinguishes region objects of interest. In future work we plan 

to enable Subdue to utilize information from segmentations at several hierarchical levels 

in the process of discovering significant subgraphs. Enabling this capability will require 

relatively minor modifications in the RHSEG output and Subdue input. RHSEG would be 

modified to output a matrix describing the segmentation hierarchy, and Subduc would be 

modified to input this matrix and utilize this information in its inexact graph matching 

scheme. For example, region objects from region classes that merge one level up in the 

segmcntatioi~ hierarchy would be considered to be closer to each other than region 

objects from region classes that merge two levels up in the segmentation hierarchy (here 

"going up the segmentation hierarchy" means going to a coarser segmentation level). 



Successful completion of these modifications will be highly significant in adding the 

unique capability of automatically analyzing a segmentation hierarchy and automatically 

choosing the appropriate hierarchical level for land use !land cover identification, We are 

not aware of any other software package having this capability. However, a recent paper 

by Akcay and Aksoy (2008) describes an attempt for automatic selection of regions from 

a segmentation hierarchy based on spectral homogeneity and neighborhood connectivity. 

4.2 IMPROVING SCRDUE PROCESSIP~G THROUGHPUT 

WITH A PLANAR GRAPH ASSUMPTION 

We noted in the background section that Subdue consumes a great deal of computer 

processing time in its analysis. It took about 93 hours to analyze an input graph with 

38,773 vertices and about 8.3 hours to analyze an input graph with 17,531 vertices. 

Subduc assumes that the graphs being analyzed arc general graphs. About 99% of 

Subdue's computation time is spent in identifying instances of a candidate pattern. At 

present there is no known polynomial-time algorithm for testing if two general graphs are 

isomorphic (Jenner, et al., 2003). I-Iowcvcr, graph isomorphism for planar graphs is 

linear. Since we will be employing a region adjaccney graph representation for the 

RHSEG segmentations, we will be working with planar graphs (Wang and Abe, 1995) 

and can make use of the graph isomorphism tests have been previously explored for this 

purpose (Kukluk, et ul.: 2005; Boyer and Myrvold, 1999). We anticipate that the 

subsequent improvement in the graph match runtime brought about by giving Subdue an 

option to assume that thc incoming graph is planar will greatly improve Subdue's ability 

to quickly process image data and find more complcx discoveries. 



4.3 GENERAL APPROACHES FOR E%ABI.ISG SUBDUE TO UTILIZE 

REGION OBJECT SIZE AND REGION OBJECT NEIGHBOR RELATIOXSIIIP ~ N F O K M A T I O ~  

The information provided to Subdue from the RHSEG generated image segmentations 

in our initial tests was very limited compared to what could potentially be provided, In 

particular, Subdue was provided with only the region class membership of each region 

object along with the connectivity between spatially adjacent rcgion objects. In future 

work, we plan to explore techniques through which a richer set of information about the 

image segmentation is provided to Subdue, along with modifications to Subdue that will 

be necessary to enable Subdue to utilize this information. 

Two key pieces of information that appear to be important are the size of the region 

objects and the nature of the region object neighbor relationship. While utilization of 

rcgion size information is relatively straightforward, the region object neighbor 

relationship requires some further exploration. Given the image segmentation provided 

by RFiSEG, the topological (bordering, invading, surrounding), distance-based (near, far) 

and directional (above, below. right, left) pair-wise region spatial relationships can be 

modeled based on relative overlaps, distances and orientations between rcgion boundaries 

(Aksoy, et al., 2005). Such relationships can be combined into an attributed relational 

graph structure where the regions are represented by graph nodes and their spatial 

relationships are represented by the edges between such nodes (Aksoy, 2006). Nodes can 

be labeled with the class (land cover/use) names and the corresponding confidence values 

(posterior probabilities) for these class assignments. Edges can be labeled with the spatial 



relationship classes (pair-wise relationship names) and the corresponding degrees (fuzzy 

membership values) for these relationships. 

An important issue is the trade-off between how much detail is modeled and how well 

the model can be generalized. For example, when the connectivity (spatial adjacency) 

relation is separated into the three cases of bordering, invading and surrounding, the 

number of instances of matching subgraphs can significantly decrease even if inexact 

graph matching techniques are used. An interesting problem is to find the important 

spatial relationships so that higher weights can be given to those relationships during 

substructure discovesy using Subdue. For example, Kalaycilar, et a[. (2008) examined, 

the summarization of the full graph stnlcture using spatial relationship histograms and 

selection algorithms for identification of distinguishi~~g region groups that are frcquently 

found in a particular class of scenes but rarely exist in others. The multi-scale 

(hierarchical) abstraction of segmentation and classification using RI-ISEG provides a 

good basis for such selection algorithms. In order to effectively utilize region object size 

information and information from modeling the spatial rclationships between region 

objects, Subdue will be modified to work on a weighted graph, i.e., a graph with 

weighted vertices and weighted links between vertices. One way to handle the weighted 

vertices and edges is to evaluate thc graph patterns as though a vertex or edge with 

weight w was equivalent to 1~ identical vertices or w edges between the neighboring 

vertices (which would be an alternative reprcsentation for these segmented images). 

Using the MDL principlc, such an approach will tend to favor graph patterns which 

include heavier-wcightcd vcrticcs and cdgcs. 



5.0 COXCI.UDIXG REMARKS 

With the increasing availability of high spatial resolution remote sensing imagery (< 

Sm), image analysis approaches must evolve to reflect thc nature of this data. Pixel based 

imagc analysis techniques that were previously successfully applied to low spatla1 

resolution remote sensing imagery have been shown to be inaccurate when applied to this 

high spatial resolution data (Marceau and Hay, 1999). This is because scale of the 

recognizable objects has become much smaller in this high spatial resolution data. For 

example, a modem housing development is captured in low spatial resolution data by 

image pixels consisting of mixtures of ground covers such as house roofs, driveways, 

grass, trees and streets. In contrast, high spatial resolution data captures such a scene as 

groups of relatively pure pixels of the different ground covers. That is. the discemable 

objects in the high spatial resolution are larger than the pixel spatial resolution, whereas 

these same objects are generally smaller than the pixel spatial resolution in low spatial 

resolution data. 

The field of Object-Based Image Analysis (OBIA) has arisen in recent years to answer 

this need to move beyond pixel based analysis. Many of practitioners at thc object-based 

image analysis conferences (OBIA 2006 and GEOBIA 2008) reported some limited 

successes in Geographic Object Based lmage Analysis using software from Definiens 

(h t tw:~~ww~v,def in icns .co~ .  The analysis approach taken by this software is to perform a 

segmentation of the imagcly data, possibly at a couple different levels of detail, and then 

develop a set of rules based on region object features to identify the region objects. 

Certain rules can bc developed hased on region object neighbor relationships. In contrast 



to the soft~varc we are developing. the Definiens software cannot implctnent rules 

concerning region object neighbor networks beyond a pair-wise relationship. and 

Detiniens software has no provision for discovering significant spatial relationships 

between region objects. In this regard, the capabilities we arc developing are significantly 

beyond those provided by any currently available software package. 
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