Sensor Applications and Data Validation

Presented at
Alabama A & M University

John Wiley
Marshall Space Flight Center
Advanced Sensors Development and Testing

Sensor Applications and Data Validation
Alabama A&M University
July 2008
Sensor and Transportation Timeline
In 1622 the invention of the slide rule along with fundamental physical sensors (thermometer and Pitot tube) led the way for the earliest mechanically fuel propulsion system - *steam locomotion*.
The first **electric motor** in 1821 came in use along with the Venturi tube. This year also marked the invention of the thermocouple still in common use today!
Sensor engineering was revolutionized with the invention of the magnetic flow meter and the Wheatstone bridge. A few decades later the first gasoline powered automobile hit the streets.
Man’s first powered flight followed on the heels of the earliest magnetic recordings, the resistance thermal device (RTD) and the optical pyrometer. Still a century to go!
Timeline of Sensor and Transportation History

No significant sensor development

1925

With electronic amplifying tubes and the 1908 development of the strain gauge Man’s first steps are taken toward space with the first liquid fueled rocket. Sadly, this also begins a void in fundamental sensors innovation.
No significant sensor development

1925

In 1930 computer solutions to differential equations were available. Existing sensors helped engineer and test larger chemical rockets.
The 1947 *supersonic flight* followed the creation of the ENIAC. Data systems and supporting electronics continue to advance. Still no significant sensor development!
Timeline of Sensor and Transportation History

No significant sensor development

1960

Enter in the age of the transistor. Electronics are revolutionized. Mankind challenges the Moon. Again, no sensor advancement
Timeline of Sensor and Transportation History

No significant sensor development

Man’s first **powered flight** followed on the heels of the earliest magnetic recordings, calculators and optical pyrometer. There is still a century to go!
Sensor Enabled Technology Advancements

The mechanical configuration of automobiles have changed marginally while improvements in sensors and control have dramatically improved engine efficiency, reliability and useful life.

The aviation industry has also taken advantage of sensors and control systems to reduce operational costs. Sensors and high fidelity control systems fly planes at levels of performance beyond human capability.

Sophisticated environmental controls allow a greater level of comfort and efficiency in our homes.

Sensors have given the medical field a better understanding of the human body and the environment in which we live.
Sensor Applications

Sensor applications are the process of selecting the correct sensor for the desired measurement.

- Define a well thought out measurement problem.
- Define how the data will be used.
- Have an open mind regarding the best solution to the measurements problem. Don’t get trapped by “catalog engineering”.
- Identify all of the desired parameters to be measured.
- Identify all of the environmental parameters that will affect the measurement.
- Determine a validation plan.
- Determine calibration requirements
- Write a statement and assessment of necessary technical assumptions
- Write a statement and assessment of the risks to the data.
Data Validation

“Valid Data are data that represent the process being observed as though the Measurement System had not been there, interfering with the process being observed and distorting the information flow through the system.”

Peter K. Stein

Validation is the process of analyzing the complete measurement system for undesired sensitivities or insensitivities that will distort data.
Sensor Applications
Sensor Applications

Sensor Applications

- What is a Measurement?
- Measurement Tenets
- The Complete Measurement System
 - Measurand
 - Boundary Layers
 - Sensor Sensitivities
 - Sensor Response
Sensors Measure Physical Parameters

Pressure
Temperature
Flow
Acceleration
Heat Flux
Optical Intensity
Etc.
Etc,
What is a Measurement?

A measurement is the process of converting energy from some physical phenomena into a form that can be analytically manipulated into engineering units in order to obtain information about the phenomena under consideration.

Information Transfer Requires Energy Transfer!
Measurement Tenets

1. What do you really need to measure?

2. How are you going to use the measured information?

3. Recognize that each boundary layer or component between you and the fundamental measurand affects delay, response, repeatability, linearity and hysteresis.

4. Do not change what you are attempting to measure by making the measurement!

“What would the measurement system have read if it had not been there transferring energy with the physical phenomena you are measuring?”

Peter K. Stein
The Complete Measurement System

Electronic Signal Conditioning
- Frequency to DC
- Amplification
- Bridge conditioning
- Temp reference

Sensors/Transducers
- Pressure
- Temperature
- Optical Detector

Boundary Layers
- Sense Lines
- Diaphragms
- Wires

Digital Data Acquisition (DAQ)
- Filtering
- Temporal Response
- Frequency Response
- Boundary Layers
- Equations
- Lookup Tables

Undesired Physical Phenomena

Measurand
Desired Physical Phenomena

Reference: 2
Basic Sensor Model

Desired Inputs:
Pressure
Temperature
Etc.

Undesired Sensor Sensitivities

Undesired Inputs:
Temperature
Strain
Etc.

Sensor Output:

Undesired Sensor sensitivities are physical phenomena that cause your sensor or electronics to produce an output.

!! Both Desired and Undesired inputs will produce an output if the sensor is sensitive to those inputs !!
The Measurand - Desired Physical Phenomena

Mass Flow Measurement Example

The physical phenomena that you would like to measure. This is also your desired sensor sensitivity.

\[\text{Mass Flow Rate} = \dot{M} = \frac{\partial m}{\partial t} = \rho \times \vec{v} \times A \]

Fluid Flow

\[\dot{M} = \text{Density (}\rho\text{)} \times \text{Velocity (}\vec{v}\text{)} \times \text{Cross-Sectional Area (} A \text{)} \]

\[\text{Kg/s} \quad \text{kg/m}^3 \quad \text{m/s} \quad \text{m}^2 \]
Mass Flow Rate \(\dot{M} = \frac{\pi}{4} \sqrt{2} \frac{CY_{1}d_{f}^{2}}{\sqrt{1 - \left(\frac{d_{f}}{D_{f}} \right)^{4}}} \sqrt{\rho_{flow}} \sqrt{\Delta P} \)

Mass Flow Rate \(\dot{M} = \rho \times V_{flow} \)

Fluid Flow

\(\dot{M} \approx \)

Sensor Applications and Data Validation

Alabama A&M University

July 2008
Sensor Response

- **Temporal Response**
 - The time constant or rise time of the sensor.

- **Frequency Response**
 - The “bandwidth” of frequencies that the sensor can respond to.

- **Phase Response**
 - The associated delay of individual frequencies the sensor responds to.

- **Indicial Response**
 - Sensor system response to a step function input.
Temporal Response

• **Rise Time**
 - The time it takes for a sensor to go from 10% to 90% of a step input.

• **1st Time Constant (tau)**
 - The time it takes for a sensor to go from 0 to 63.2% of a step input. It takes approximately 5 tau to reach 99.9% of a step input.
Temporal Response
Indicial Response
Time Domain Deconvolution

The systems indicial response can be separated from the phenomena you are measuring using time domain deconvolution.

\[
F(i) = \frac{R(i) - \sum_{j=2}^{j=i} s(j)F(i-j+1)}{S_1}
\]
Sensor Frequency Response
Where do you see frequency?
Frequency Response (Butterworth)
Frequency Response (Chebychev)

\[\text{Gain} = \frac{1}{\sqrt{1 + \epsilon^2}} \]

- Cutoff frequency
- Passband
- Stopband
- \(\frac{\omega}{\omega_0} \)
Frequency Response (Elliptic)

\[G = \frac{1}{\sqrt{1 + \epsilon^2}} \]

\[G = \frac{1}{\sqrt{1 + \epsilon^2 L^2}} \]
Boundary Layers

• Physical Boundary Layers
 - Pressure sense line tubes
 - Material Thickness
 - Gradients; density, thermal, acoustic

• Analytic Boundary Layers
 - Undesired sensor sensitivities
 - Complex equations
 - Calibrations
Analytic Boundary

\[\dot{M} = \frac{\pi}{4} \sqrt{2} \frac{CY_1d_f^2}{\sqrt{1 - \left(\frac{d_f}{D_f}\right)^4}} \sqrt{\rho_{flow}} \sqrt{\Delta P} \]

\(C = \) discharge coefficient [unitless]
\(Y_1 = \) adiabatic expansion factor [unitless]
\(d_f = \) primary contraction diameter during actual flow conditions [m]
\(D_f = \) pipe diameter during actual flow conditions [m]
\(\rho_{flow} = \) density at flowing conditions [kg/m³]
\(\Delta P = \) pressure differential [Pa]
Analytic & Physical Boundary Layers, Insensitivities

Mass Flow Rate $\dot{M} = \frac{\pi}{4} \sqrt{2} \sqrt{\frac{CY_1 d_f^2}{\left(\frac{d_f}{D_f}\right)^4}} \sqrt{\rho_{flow}} \sqrt{\Delta P}$

Fluid Flow

Mass Flow Rate $\dot{M} = \rho \times V_{flow}$

$\dot{M} \approx \frac{\pi}{4} \sqrt{2} \sqrt{\frac{CY_1 d_f^2}{\left(\frac{d_f}{D_f}\right)^4}} \sqrt{\rho_{flow}} \sqrt{\Delta P}$

Temperature $^\circ C$

Pressure KPa

Volumetric Flow LPM
Sensor Insensitivities

Sometimes there are physical phenomena that goes undetected by your sensor that can cause error in your.

All sensors are sensitive or insensitive to physical phenomena other than what you are trying to measure!

Reference: 3
Sensor Insensitivities can result in invalid data

Uncorrected density

Optically corrected density

Injected bubble volume (%) vs. Calculated Mass Flow (kg/s)
Pressure Sense Lines
Attenuation of pressure measurement
Helmholtz Frequencies

Tube length must be an odd integer number of quarter wavelengths, i.e.,

\[L = \frac{2n + 1}{4} \lambda \quad \text{for } n = 0, 1, 2, \ldots \]

Substituting \(\lambda = \frac{v}{f} \), we obtain

\[f = \frac{v}{4L} (2n + 1) \quad \text{for } n = 0, 1, 2, \ldots \]
Resonance

Resonant Frequencies in Sense Line

Frequency (Hz)

Mode

Sensor Applications and Data Validation
Alabama A&M University
July 2008
Pressure Sense lines with thermal Gradients
Thermal Gradients in Pressure Sense Lines
Material Thickness Affects Temporal Response
Mass Flow Rate \(\dot{M} \) can be calculated using the formula:

\[
\dot{M} = \frac{\pi}{4} \sqrt{2} \frac{C Y_1 d_f^2}{\sqrt{1 - \left(\frac{d_f}{D_f}\right)^4}} \sqrt{\rho_{flow}} \sqrt{\Delta P}.
\]

Mass Flow Rate can also be expressed as:

\[\dot{M} = \rho \times V_{flow} \]

Fluid Flow

\[\dot{M} \approx \text{Kg/s} \]

Temperature \(^\circ C \)

Pressure \(\text{KPa} \)

Temperature \(^\circ C \)

Pressure \(\text{KPa} \)

Volumetric Flow

LPM

Sensor Applications and Data Validation 46

Alabama A&M University
July 2008
Undesired Sensor Sensitivities - Mass Flow Example
Pressure, Temperature and Turbine Flow Meter Data

Temperature at Optical Flow Meter
Pressure at Optical Flow Meter
LN2 Turbine Flow Meter Upstream
LN2 Turbine Flow Meter Downstream
Gaseous Helium Inlet Turbine Flow Meter

Helium Injection ~2.5 Seconds
Helium Injection ~3.5 Seconds
Processed Optical Flow Meter Data

- Calculated Peng-Robinson Density Model
- Calculated Rayleigh Density Model
- Helium Injection ~2.5 Seconds
- Helium Injection ~3.5 Seconds

Sensor Applications and Data Validation 48 Alabama A&M University July 2008
Data Validation
Data Validation

- Data Validation
 - Validation versus calibration
 - System characterization
 - Data acquisition
Data Validation

“Valid Data are data that represent the process being observed as though the Measurement System had not been there, interfering with the process being observed and distorting the information flow through the system.”

Peter K. Stein

Validation is the process of analyzing the complete measurement system for undesired sensitivities or insensitivities that will distort data.
Calibration

Sensors output voltages and current, not pressure, temperature, acceleration, etc.

Calibration is the process of establishing a traceable mathematical relationship between the physical parameter measured in engineering units (psi, degrees, g's, btu/hr, etc.) and the output voltage or current of the sensor. For example a pressure sensor calibration would determine the following:

- **Sensitivity**: volts/psi
- **Offset**: psi

\[
\text{psi} = \text{volt} \times \frac{\text{psi}}{\text{volt}} + \text{offset psi} \quad \text{(linear relationship)}
\]

Calibrations should be relevant to the environment the sensor will be used in!
Data Collection and Sensors

• Data collected should correctly reflect the phenomena being observed pressure, temperature, velocity, time, etc.
• Sensor data is always at least one step removed from reality
• Sensor response time is a familiar effect
• Dynamic range of the sensor is always a concern
• Linearity: 50 mV/psi is not always the case
• Averaging as a low-pass filter
• A low digital sampling rate is comparable to a low pass filter (ignoring aliasing problems)
Analytic & Physical Boundary Layers

Mass Flow Rate \(\dot{M} \) = \(\frac{\pi}{4} \sqrt{2} \frac{CY_1d_f^2}{\sqrt{\left(\frac{d_f}{D_f}\right)^4 \sqrt{\Delta P}}} \)

Mass Flow Rate = \(\dot{M} = \rho \times V_{\text{flow}} \)

Fluid Flow

\(\dot{M} \approx \)

Kg/s

Temperature °C

Pressure KPa

Temperature °C

Pressure KPa

Sensor Applications and Data Validation 54 Alabama A&M University July 2008
A measurement system performs a series of convolutions on the information from the energy from the physical parameter as it “passes” through each component. The physical environment parameters are convolved with each component.
Convolution

Convolution is a mathematical operator that takes two functions and “convolves” them into a third function.
A transfer function maps the input of a system to the output of that system. For time invariant systems, transfer functions are multiplicative in the frequency domain.

\[g_\circ(t) = S\{g_i(t)\} \]
$H(\omega)$, the Transfer Function

\[H(\omega) = \frac{G_o(\omega)}{G_i(\omega)} \]

If the right sort of function is inputted into the system, this quotient will yield the transfer function of the system.

Flat Spectrum Inputs are good choices!
Frequency response of the system is a plot of the transfer function \(H(\omega) \) of the system. The transfer function can be determined by inputting a flat spectrum signal such as an impulse response function or white noise.
Impulse Response Function

\[g_0(t) = \int_{-\infty}^{\infty} g_i(\tau) \delta(t - \tau) d\tau \] (sifting property)

\[g_0(t) = S\{\int g_i(\tau) \delta(t - \tau) d\tau\} \]

\[g_0(t) = \int g_i(\tau) S\{\delta(t - \tau)\} d\tau \]

\[h(t, \tau) \equiv S\{\delta(t - \tau)\} \]

The function \(h(t, \tau) \) is called the impulse response function.

We can now write

\[g_0(t) = \int g_i(\tau) h(t, \tau) d\tau \]
A system having components whose characteristics do not change in time is considered time invariant. For such a system, the impulse response function depends only on the time since the impulse,

\[h(t, \tau) = h(t - \tau) \]
Time Invariant Systems (cont.)

\[g_o(t) = \int g_i(\tau)h(t - \tau)d\tau \]

which is a convolution, and can be written as:

\[g_o(t) = g_i * h \]

Fourier transform both sides, using a capital letter to represent the F.T. Since the F.T. of the convolution is the product of F.T.'s:

\[G_o(\omega) = G_i(\omega)H(\omega) \]
Using Empirically Derived Transfer functions to Determine the System’s Frequency Response

Electrical and Mechanical system transfer functions can be empirically derived using impulse response functions.

Thrust Structures- Smart Hammers
Electrical Systems-Pink/White Noise
Phase Response

• The phase response of a system defines the delay (phase shift) of individual frequencies. Poor phase response of a measurement system will distort the final time domain waveform.

• Constant Phase- All frequencies are delayed by the same increment of time.

• Linear phase- The phase shifts for all frequencies are linearly related.
Phase Response

[Diagram showing phase shift between two sine waves]
Analog to Digital Conversion
Data Sampling

Analog Signal
Continuous

Analog to Digital Conversion

Digital Signal
Discrete

A/D Converter
Data Sampling

The sampling rate or sampling frequency is the number of samples per unit of time.

A sample rate of (Hz is 1/sec)

50Hz = 50 samples per second

The sample period or sample time is the amount of time between samples and is the reciprocal of the sample rate.

sample period = 1/sample rate

A sample rate of 50 Hz would have a sample period of

1/50 Hz = 20 milliseconds
Is the Nyquist theorem good enough?

Adherence to the Nyquist criteria will not result in an accurate temporal representation!

1.06 samples/cycle
0.65 samples/cycle
2.00 samples/cycle
1.00 samples/cycle

Nyquist Theorem
LLT 1.5 Inch Nozzle, Test
References

2. Peter K. Stein, The Engineering of Measurement Systems
3. Photograph of Indonesian Tsunami Research/BPPT, Jakarta, Indonesia
 28 April 2005. Members of the ITST look at data collected by the team.
 From left to right: Dr. Guy Gelfenbaum (USGS), Dr. Bruce Jaffe (USGS),
 Dr. Gegar Prasetya (BPPT), and Dr. Eko Yulianto (LIPI).
4. Magnus Akerstrom, Master’s Thesis UAH, Mass Flow Rate of Two Phase
 Flows.
5. Patrick Vitarius, Acoustic Characterization of Pressure Sense Lines
7. Don Gregory, Transfer functions