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Abstract: This paper examines the ability of a
real-time "disturbance-observer" to adapt-to and
closely estimate the time-behavior of a

disturbance-input w(t) (and of it's state-vector z(t))
even when the actual w(t) time-behavior deviates
from the observer's "internal-copy" of the
nominal/predicted w(t)-behavior. By means of
technical explanations and confirming simulation
studies of numerical examples, the disturbance-
observer's adaptive ability isexplained in terms-of
the underlying spline-model used to derive the

disturbance state-model and the intrinsic dynamic
characteristics of a state-observer.

I. Introduction

The modern-control concept of a "disturbance-
observer" for linear dynamical systems was
originally developed in a 1966-68 research-study
funded by NASA's Marshall Space-Flight Center
through the Huntsville Office of the General
Dynamics Corporation [1], [2]. Those earliest

results, obtained by variations of the optimal Linear
Quadratic Regulator control-design methodology and
by a novel alternative, purely (linear) algebraic/
stabilization control-design method [2; pp. ], were
first published in a series of 1968-1970 journal
papers [3]-[5].

The concepts of: (i) a disturbance-"state" z(t), (ii)
an associated disturbance state-model _ = Dz

[5; p.225] and (iii) a corresponding disturbance-state
observer (both full-order and reduced-order) have
turned out to comprise a surprisingly-effective tool in
the design of "smart", high-performance, modem
MIMO control systems [6]. In particular, such
control-systems can automatically "accommodate"
(i.e., cancel-out, minimize or optimally utilize) the

presence of a broad variety Of uncertain, persistent,
uncontrollable-inputs (disturbance-inputs) wi(t) that
would otherwise interfere-with the desired closed-

loop behavior of a multivariable dynamic system, [7].

In connection with:practical applications of
disturbance-accommodating control system design
many users have obs_ed that a disturbance-

observer is capable of adapting-to, and producing

surprisingly-close, real-time estimates _(t) of, the

actual disturbance time-behavior w(t) - - - even when
the actual time-behavior of w(t) deviates from the

behavior modeled by the "internal-copy" [5; Fig. 2
and text below] of the w(t) state-dynamics embodied
in the disturbance-observer design (i.e., in the spline-
model and D-matrix).

In this paper a technical explanation, with
supporting examples and simulation results, is
presented to explain the adaptive/robust disturbance-
estimation capability of a disturbance-observer.

II. Spline-Models and State-Models for Uncertain
Disturbance-Inputs

To minimize the complexity of this presentation,
we will restrict attention to the simpler case of a
single (and scalar) disturbance-input w(t). However,
in principle, all our results apply also to the case of
multivariable disturbance-inputs

w(t) = w = col. (w l (t), w 2 (t),.,,, Wp (t)),

In the mathematical-theory of disturbance-
accommodation, [7], [8], the uncertain time-behavior
of a (real-valued, scalar) disturbance-input w(t) is
modeled by a spline-function of the form

_(t) = qfl(t) + _f2 (t) +...+ CmfM(t); w = scalar, (1)

where {C1}1m is a set of "arbitrary," real-valued

weighting-coefficients that are presumed essentially
"constant" but may abruptly change-values in a time-
sparse, once-in-a-while manner (hereafter referred-to
as a "stepwise-constant" manner). In (1) the set

{f,(t)}_ is a set of real-valued, well-defined, well-

behaved, (continuously differentiable, etc.)
independent, known, "basis-functions" that are user-
chosen to represent the user's knowledge/
presumptions about the fundamental-modes

(building-blocks) of w(t) time-behavior. At each
moment "t" the basis-functions are "weighted" and
linearly-combined according-to (1) to produce the

actual time-behavior (kinematics) of w(t) at that
moment.

In practical applications the time-behavior of w(t)
is "uncertain" because the values of the "stepwise-



constant" weighting coefficients {c_M_l in (1) are

(typically) unknown, not reliably predictable, and not
directly measurable. Moreover, the user's a priori

choice of basis-functions {fi(t)}l might not exactly

"match" the actual basis-functions associated with
real-life, w(t) time-behavior encountered in a
realistic, practical application.

In disturbance-accommodation applications,
the practicality and effectiveness of the spline-model
(1) is considerably enhanced if the user chooses
basis-functions f(t)in (1) from the class of

functions that are of "linear-dynamic" (LD) type, [8;
Eqs. 6-12]. That is, each f(t) obeys a respective

well-behaved, well-defined linear, homogenous
differential equation (of finite-order). In that case, on

M

those sub-intervals l'Z of time where the {Ci}1 all

remain constant, the function w(t) defined by (1),
with "arbitrary" (constant) weighting-

coefficients {_ }1M, also satisfies a knowable, linear,

homogenous differential :equation(of finite-order) of
the form

dPw dP-_w dw
dtP 4-% d--d_+...+ a2 --_-+ alW = 0, t _ _, (2)

(X Pwhere the { J}l in (2) are known/knowable

parameters that depend only on the basis set {fj(t)}_

and, in some cases, may be time-varying parameters,
[8]. Consequently, the one, higher-order differential
equation disturbance-model (2) can be replaced by an
equivalent "disturbance state-model" [6] consisting
of a set of "p" first-order, ordinary, coupled
differential equations of the form

_i =g,(z;,z2,...zp), ( " )_; p>M, (3)

where the "disturbance state-variables" z_ are
suitably-defined independent, functions ofw(t) and of
the first (p-l) time-derivatives of w(t). For instance,
as one illustration, one can define the z_as the "phase-
variables"

(p-l)

zj=w, , z2 , z3=w,...,zp= w, (4)

in which case the disturbance state-model (3)
becomes (in light of (2), (4))

z.'i= zj+] i = 1,2,..., (p- 1),zp = -oqz l - _2z2 ..... %z,.
(5)

The results (4), (5) can be more-compactly expressed
in the vector-matrix format

w(t) =< ho, z(t) > ; < .,. > -denotes inner product (6a)

= DoZ ; z(to) = arbitrary, t e C2 (6b)

where

ho_ row (1,0, 0,..., 0) (6c)

o 1 o ... i]

o o 1 .-.

_: ".. .
o 0 o ...

(6d)

As shown in [6; p.636] the restricted "disturbance
state-model" (6) can be easily generalized to
correctly represent the time-sparse, unpredictable
jumps in the values of the "constants" Cg in (1) by
adding, to the right side of (6), the p-vector input-

term _(t) to obtain _ = DoZ + _(t)where

_(t) = col.(_,(t),_2(t)...,_o(t)), (7)

and where each element _i(t) of _(t) is a time-sparse
sequence of uncertain dirac-impulses having
unknown intensities and unknown (sparse) arrival-
times. The effect of the impulse-sequences ci(t) on
the solutions z(t) of (6) is to impart uncertain, time-
sparse jumps in the values of the corresponding zi(t)
and thereby "cause/model" similar, corresponding,
unknown time-sparse jumps in the values of the C_in
(1), [8; p.395].

Since the primary purpose of this paper is to
provide a technical explanation for a disturbance
observer's apparent, inferred "adaptive-behavior" of
the C_-values in (1), between successive time-sparse
jumps in the C_,(i.e. for t _ _2) it suffices to consider
the corresponding restricted state-model (6) in the
remaining sections of this paper. Moreover, to
further simplify things, we will hereafter assume the

parameters {% }_ in (2), (6) are all constant (and real-

valued).

IlL Real-Time Disturbance-State Observers

It is recalled that the conversion of the LD spline-
model (1) into a homogenous, linear differential

equation model (2) and subsequently into a



homogenous, linear, "disturbance state-model" (6) is
predicated on the tacit assumption that the set of

"stepwise-constant" weighting coefficients {C,}_ in

(1) remain constant over the time-intervals t e
being considered. That simplifying assumption
allows us to avoid several irrelevant side-issues that

would distract from the previously stated primary
purpose of this paper.

To develop the results in this paper, we lose no
generality (and achieve further reduction of
complexity) by employing the simplified, continuous-
time, disturbance-state observer introduced-in [8; p.
434] corresponding to the special (and relatively rare)
case where the (scalar) disturbance w(t) is directly,
reliably and continuously measurable by some
appropriate (noise-free) sensor. For that special case,
the "full-order" version of a continuous-time,
"disturbance-state observer", as presented in [8] and
based on (6), has the simple form [8; Eqs. (52), (53)].

= Do_ - kdo[w(t) -- (ho, _(t))], (8)

where w(t) in (8) denotes the real-time measurement
of the actual disturbance (i.e. the "input" to the state-
observer (8)), and kdo denotes the observer gain-
vector that must be designed to assure
2(0 --'>z(t) sufficiently fast for the application

requirements. For the latter purpose, the dynamical

equation governing the observer-error ez _ (z-_)is

easily computed to be [8 ; Eq. (53)]

ez = [Do + kdoho]ez , (9)

and thus the gain-vector kdo should be designed to
make all solutions ez(0 of (9) approach zero
sufficiently fast. Since we are assuming Do is a
constant matrix, it suffices to design kdo to be a
constant vector that makes all eigenvalues of the
composite-matrix [Do - kdo ho] lie sufficiently-deep
in the left-half of the complex-plane.

IV. Relation Between the {C_}_M in (1) and the

{zl}_ in (6)

In the routine practical applications of
disturbance-accommodating control-theory, it is
neither necessary nor beneficial to "know" the values
of the Ci in (1), thanks to the ability to express the
best/optimal control-input (control-law)in terms of

reliable, real-time observer- estimates of _ (t) (and of

plant states J,(t)). This fortunate "ability" is so

important it is called the Principle of (Real-Time)
Optimal Disturbance-Accommodation [7; pg. 219-
20]

However, since the spline-model (1) and the state-
model (6) both represent the same (scalar)
disturbance time-behavior w(t), it is clear that the
values of the Ci in (1) must be related-to the values
of the state-variables zj in (6). In fact, if the values of

the {zj (t)}_, p < M, are known at any moment t _ I'_,

then (in principle) the corresponding values of the

{C_}_ in (1), at that same moment, should be

uniquely determined (recall the basis-functionsf(t) in
(1) are assumed independent). In the LD case, as
considered here, the Ci are related to the zj by a set of
coupled, linear algebraic equations; see [9; Eq. (5d)]
and the Examples below.

This observation suggests a novel procedure for
experimentally evaluating the real-time values of the
Ci in (1) from reliable, real-time state-estimates

2j(t) obtained from a disturbance-state observer - - -
if and when there is some "need" to know/monitor

the real-time Ci-values in (1).

V. What Happens if the Actual w(t)-Behavior
Doesn't Conform to the Models (1), (6)?

Many users of disturbance-accommodating
control theory have "observed" that disturbance-state
observers (both full-order and reduced-order;
continuous-time type) seem to correctly estimate the
actual disturbance-input w(t) even when the actual
w(t) time-behavior (mildly) deviates from the
modeled time-behavior embodied in the spline-model
(1) and in the state-model (6). For instance, if(l), (6)
are based-on the behavior-model: w(t) = unknown
constant = C1, the corresponding observer (8) (with a
sufficiently short "settling-time) produces real-time
estimates _(t) _ ho_(t) that are surprisingly accurate

even when the actual w(t) is not constant but is
(slowly) varying with time. The traditional intuitive
explanation for this seemingly "adaptive/robust-
estimation behavior" is that a continuous-time

disturbance-observer Is continually re-evaluating, the
state-estimate _(t), and reconciling _(t),with (1)

based-on "current" actual w(t)-behavior and on the
models (1), (6). Thus, in the case cited, a slowly-
varying actual w(t) is "seen/perceived" by a
continuous-time disturbance-state observer as a series
of (infinitesimally) short, "constant" stair-step
variations in the expected w(t) = constant behavior
embodied in (1), (6) and in the corresponding
observer D-matrix structure.

In the remaining sections of this paper we will
experimentally "confirm" this intuition by meanS of
several worked examples using, realistic'Lcomposite-
state" (plant -r disturbance) observers [8; pp. 431-
437], and corresponding numerical, simulation-
results. In particular, we will use the algebraic



equationsrelatingtheC_ in (1) to the zi in (4)-(6) to
experimentally evaluate the disturbance observer's
"perception" (re-construction) of the actual, real-time
values of the "weighting-constants" Ci in (1) when
the actual w(t) time-behavior (t e _) deviates (both
"mildly" and "grossly"!) from the time-behavior
modeled by (1) and embodied in the structure of the
disturbance observer's D-matrix in (8). These results
demonstrate that when the actual w(t)-behavior
deviates from the behavior modeled by (1), the state-
estimate _(t), generated by a continuous-time

"disturbance-state observer" infers that the
"constants" C_ in (1) are rapidly changing-value in a
virtually-continuous, stair-step manner, so that the
resulting w(t) in (1) then closely "matches" the actual
w(t)-behavior.

VI. Illustrative Examples
To demonstrate the apparent "adaptive-behavior"
exhibited by disturbance-observers a simple pure
inertia plant will be modeled with a disturbance
applied. The system layout with a composite
observer is given in Fig. 1.

'D
output

Figure 1: Overview of the Simulation
The state-space representationof the plant model is:

-:1;'ol
u = u s + u a ;u d -cancelsw(t) effects,

(10)

State feedback control us = KpJ is achieved by

multiplying the state estimate _ by the gain Kp.
Disturbance cancellation is achieved by feeding back

the disturbance estimate _ to achieve Bpua,_-Fw.
The the closed loop roots of the system at are placed
at [-2 -2.5]. This results in Kp = [5 4.5] This value
of Kp will be used throughout the examples presented
below.

To demonstrate the "adaptive" behavior of the
disturbance observer we will first examine the

performance of the disturbance observer when an
appropriate dynamic basis for the observer is chosen
when a "poor" choice is made for the dynamic basis
of that observer. Let us In'st consider an example
where the basis chosen for the disturbance observer is
a "good" one ("good" in the sense that it contains a
basis representative of the disturbance).

Example #1:
• Disturbance a constant with a step-change at

t=3s.

• Spline-model for the disturbance observer is
w(t) = cI -t-c2t (a "good" model)

The disturbance state model is:

'0].:,01
Placing the composite observer poles

[8; p.4-31] at -6.6_2.4i and -6.9_1.2i results in the
following composite observer feedback gain:

Ko = coi(26.9, 279, 1320, 2400) (12)

The results of this example are shown in Fig. 2.

Observer Basis: c I +c2t

3 .....
i i _ i i

/ F I______1 _ :-"_' , /

:'-" --'T.... t
.1 I _-" t I I I I J

0 1 2 3 4 5 6

] i -- --"% i I='_=_]

i t k ----i -_ %,,

-5

0 1 2 3 4 5 6

1 E.... i

(c) F i

o .... I.........

-'o .; _ ,
"rime [see)

Fig. 2: Constant Disturbance, c: + c2tBasis
The disturbance w(t) has an initial value of -0.5 and
at 3 sec jumps to a value of 1.0. As one might expect
(since the observer dynamic basis is well chosen for
this disturbance) the composite observer does a good
job of estimating the disturbance and the observer
identifies the Cl, c2 as "stepwise-constants". When an
unpredictable jump occurs at t = 3 see the observer
experiences a transient but quickly recovers and locks
back onto the disturbance w(t). In Fig. 2 (a) we see
the disturbance state z(t). Since H = [1 0] the

disturbance estimate _(t) = _(t) (6a). Examination

of zl(t) in Fig. 2 (a) shows the good tracking of the



disturbance w(t) spoken of above. Additional insight
can be gained by looking at the observer performance
in terms of weighting coefficients in (1) for the spline
function w(t) = cl + c2t. It is simple to solve for Cl
and c2 in this example (this is not always so easy):

CI= ZI--Z2t
(13)

C 2 ----g 2

Fig. 2(b) shows that the c2 coefficient has a
significant role during the transient and then returns
to zero as the observer locks back onto the constant
disturbance and only cl is needed. Fig. 2 (c) confirms
that the spline model of the disturbance

¢v(t)= cl(t) + c2(t)t is identical to the

disturbance-state representation _(t) = Zl(t).

Example #2

• Disturbance is a sinusoid with a frequency
of 0.75 rad/sec and an amplitude of 1.0.

• Basis for the disturbance observer is
w(t) = cl + c2t

The disturbance state model is the same as in

example #1 (11). The observer poles are also at the
same location so the observer gain Ko is the same
(12). This observer has the same basis so the relation
between z(t) and c(t) is also the same (13).

Observer Basis: cI + c2 t

0.5 -- -F----I

0 1 2 3 4 s 6

2 i I i
---q .... F---q-

(b) ....

c 1 2 3 4 5 6

2
i

0 -_ ....

to 2 3 4 5 6

11me(see)

Fig. 3: Sinusoid Disturbance, cl + cd Basis

The surprising result shown in Fig. 3 is that a
disturbance observer designed with a dynamic model
("intemal-copy") for a constant plus a ramp is able to
track a sinusoid quite well. Both Cl and c2
continually-adapt their "constant-values" to maintain
accurate tracking of the disturbance.

Example #3:
• Disturbance a constant with a step at t = 3 s.

• Spline-Model for the disturbance observer is
w(t) = cl sin(coO + c2 cos(cot

The disturbance state model defined in (6) for this
disturbance basis is:

[ 0 10] H=[o9 0] (14)D = __2

Composite observer poles at-6. 6_2.4i and -
6.9_.+1.2i result in an observer feedback gain of:

Ko = co1(26.9, 279, 1740, 2990). (15)

The relationships between the disturbance-state
variables z(t) and the spline coefficients c(t) for this
observer are:

¢2 = COZI COS(COt) -- Z 2 sin(c0t)
(16)

q = (coz1 - c2cos(cot)) / sin(cot).

In this example we are tracking a constant
disturbance (with a jump) using an observer designed
for the spline-model cl sin(coO + c2 cos(coO. One

would expect poor disturbance tracking but the
results shown in Fig. 4 demonstrate surprisingly good
tracking performance.

Observer Basis: clsin(ot ) + c2¢os(ot )
3 .....

! t
2 ..... ! ...... i- lr -- -- -I ..... _- -

Ca)...... :......
.... ....

0 1 2 3 4 5
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___ ....... %'sln(_t) I /--_. I I
1 ..... o=*_s(=t) ..... _' .....

(C) o,_(,,t)+¢_s(_t) _,;/I -'7"_'._.t_......
0 .... '- - - __.......... .._......... .*"-"-"- -':"-'-_- - _._.--

.11 -- I I 1%% .." I I
0 t 2 3 4 5

"time (see)

Fig. 4: Constant Disturbance, Sinusoidal
Basis

Note that in Fig. 4 the values of c1 and c2 are
constantly shifting value/"adapting" as the sine and
cosine rise and fall with time "t". The behavior can
be explained by the fact that the disturbance observer
constantly attempts to minimize the error between the

disturbance estimate _(t)and the actual disturbance

w(t) (8). Even if the basis of the observer dynamics
in no way reflects the dynamics of the actual



disturbance the inherent property of a state-observer
is that it' will, according to the error the dynamics in
(9), seek to minimize the error between the
disturbance and its estimate. This property of an
observer gives a control system gives what can be
portrayed as "disturbance-adaptive" behavior.

There are limitations to how well an observer can

track a disturbance with a "poor" selection of the
observer basis dynamics. The performance of a
sinusoid based disturbance-observer deteriorates as

the frequency co used in the disturbance-state model
(14) becomes large relative to the frequency of jumps
in the "constant" type disturbance. Similarly, the
performance using a constant plus ramp basis for an
observer tracking a sinusoid deteriorates as the

frequency of the sinusoidal disturbance increases.
This can be offset somewhat by placing the observer
poles deeper into the left-half-plane.

VI. Conclusions

The tracking performance of disturbance-observers
when the internal-copy ofw(t) in the observer is not a
good representation of a given disturbance dynamics
has been studied. The ability of a disturbance-
observer to track a disturbance with dynamics
completely different than what was assumed by the
observer designer is the somewhat surprising result
that this paper documents. The beauty of using a
disturbance-observer in the control scheme is that

even with totally unanticipated disturbance dynamics
the "adaptive" capabilities inherent in the observer
can still yield good results. This observer "adaptive"
feature is not universal (the control designer should
always try to include all important disturbance
dynamics in the disturbance-observer basis) but it
does account for some of the robustness that

characterizes control systems that use a disturbance-
observer to accommodate disturbance inputs.
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Introduction

• A disturbance observer isa.mathematical tool used to
estimate in real-time the state of a disturbance acting on
the system.

• With knowledge of the disturbance state a controller can
compensate (accommodate) for the disturbance.

• We k(1QWtogtwhen th.~ ... ITl$thrTIQg~IJorthe .anticipated
disturbance is a "good" onelhat a disturbance observer
cahql.IiCk.ly acqtlite and track the disturbance.

• It.oasoeetlobserveej, •• hbWeVef,toa[toese.bbservers
display unexpected robustness when the functions
chosen as the.basis.set .for the observer are a poor
reflection of the disturbance waveform. This robustness
is what this presentation will illuminate and try to explain.
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Background

• ~any disturbances have waveform structure with once-in-a-while
Jumps

- As a the discontinuous jumps in a disturbance occur faster & faster it
approaches "noise" and statistical methods should be used.

- Many real world disturbances have waveform structure with only
occasional jumps and can readily be estimated with a disturbance state
observer

• A composite observer estimates both the plant state and the
disturbance state
- To estimate the disturbance state we must first decide on an

appropriate disturbance model. Gommon disturbance state models
include:

• Constant
• Constant + ramp
• Sinusoid
• Pulse
• Some combination of the above

4



Waveform Model of a Disturbance
• We must first mathematically model the anticipated

disturbance "w"

wet) == Clh(t) + c2f2(t) + ... + cMfM(t) (1)

• Thei(t} are known independent functions of time
• The ci are unknown weighting coefficients
• This is referred to as the function space representation of w(t)

• This set of functions ];(t) form the basis-.set and is
chosen to reflect the expected waveform patterns of the
disturbance

• The waveform .rnodel(t) isthe mathe.matical foundation
for this approach to disturbance modeling
- The waveform representation, however, can not be

readily implemented into a control algorithm

5



Disturbance State Models
• In order to use a disturbance observer one mnsffirstgo to an alternative

representation
- This alternative to a waveform representation is a disturbance state model

• Determining a disturbance state model can be approached as a reverse
differential equations problem. The waveform representation in (1) can
also be represented as the solution to the following general DE

dPw dP-1w dw
-- + a + ... + a- + a w == 0
dtP P dtp-1 2 dt 1

- The Ui in (2) are known parameters that depend only on the basis setf/t)

• Equation (2) can be written in the vector-matrix format:

wet) == Hz

z == Dz + aCt)

(2)

(3)

The art) term represents a series of dirac-impulses having unknown intensity and unknown arrival time.
This unknowable term is not part of the design but is included for mathematical completeness.
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Example Disturbanee ModelRepresentation

• For example, let us construct a disturbance state model for a
disturbance that is mostly constant with occasional jumps

w

t

A disturbance wet) that is constant
.with "occasional" jumps

Waveform Representation: wet) == C1

Disturbance State Representation: dw == 0
dt

H - [l],D == [0]

7



Example Disturbance Model Representation

• For a periodic disturbance with changing amplitude but a fixed
frequency calls for a sinusoid basis function

w
A disturbance wet) that is periodic
with changes in amplitude

t

Waveform Representation : w(t) == C1 sin OJt + c2 cos OJt

Disturbance State Representation: d2~ + a\ w = 0
dt

H - [m 0], D -[_~2 ~J
8



Simulation Example
• Will use the control of a pure inertia system as our test-bed
• Will examine the performance of the disturbance observer for

"good" and "bad" choices of basis functions

xvec

v1------------.---.0
output

A = [~ ~] B = [~] F = [~] C = [1 0]

Plant Model
dx = Ax + Bu + Fw

1----.-----.0
'=:--:--:-------' Disturb

01----...·1+

Constant

4

Composite Observer
dXest =Axest + Ko(y - CXest) + Bu

Primary
Control

H* u 1+=-2--_.......-=-.2

w= H*z

U xestim
L..---__'-------< Kp* u 1+2 ~.

2

U = Up + Ud

Up regulates x(t) ~ 0
Ud cancels w(t)

9



Exam Ie 1
• Disturbance is a constant with an unexpected jump
• Disturbance observer: "constant + ramp" basis (a "good" choice)

Disturbance Model: wet) = c, + c,t => D = l~ ~] H = [I 0]

Observer Basis: c
1

+ c
2

t
3r-------"-------,-,-------,-,----"-----"------;:::=====;__

: : : ,;',: : - w
2 -----------------~-------------------t-------------------f----t----\~-----i-------------------t---- - z1

: : : I : : ----- z2
(a) 1 -----------------+------------------;------------------ ' , :

: : " '~" :
o -------------::;~;-..----t----, l_ ---------------i---~~-.,..-~~--t--~---

-1 '-'"
o 2 3 4 5

-w
,-----,-------,-------,-----~-__,___-____1 f-----

! ! :.' '.,! -c1
5 -----------------+------------------i----------------- -+---,~--------.~---~-------------- ----- c2 --------

: : : i '. : -.-.-.. c2 t: : : i , .... -......... ,~...

6

With a constant in the
disturbance observer basis set
one would expect the good
tracking seen in the Figure

2.------,------,---__,-------__,-------__,--------

! i i
, , ,~ ,

(e):~lrv:1 =:"0,,1
, I' f i i-1 '-----__L.--__'-----_------'__------'__------'__------'

o 2 3 4 5 6

lime (sec) 10



Example 2
• Disturbance is a sinusoid (w =0.75 rad/s)
• Disturbance observer: "constant + ramp" basis (a "poor" choice)

Disturbance Model: w(t) = Ct + c2t => D = [~ ~] H = [1 0]

Observer Basis: c
1

+ c
2

t

1-----------.-----..: --.. : -----t-------------------t------------------~-·---

<a) ~.~ ••••••••••··· •••••!.-~~'=-~l-~----~·-{~-~:~.~~~f-_;_;_~_t=~E
-1 ------- ----. --- ---J-- ----- --- -- ----- --- J-- ---- ------ --------: --- ------- -- --- --- --L- ------ --- ---------J.-- -- ---- -- -- --

o 1 2 3 4 5 6

4,-------,-------.---------,----,---------,--------,, , ,, , ,, , ,
2 c--------------------+-------------------i--------------------:----- ----------i-------------------i-------~

-- ...-... .~.
(b) 0 ~-:...,. co:-~---.-------------- --------+-------------.::.:::.:;

--4
2 .......+ =~·T::::::~:·:1;·~~:~~~:=~:-.L~~::::~>

_._._.- c
2

t f--------l.-----'------'---'---------'
o 3 4 5 6

The observer tracks the
sinusoid disturbance using a
constant + ramp internal model
for the disturbance. Note how
c1 &c2 constantly adjust to
minimize the error between the
disturbance and its estimate

1 ------------------~.---------
_____ .. L _

I I -w

0.5 ----:::::: :::J::::::::::::::::::::j::::::::::::::::::::l::::::: ._:::::::~:----::::::::::::::J.=_~~_~~_2_~
: : i : i

-O~~ ::::::::::::::::::j::::::::::::::::::::j::::::::::::::::::::l::::::::::::::::::::t::::::::::::::: ~:::::::::::::::----
o 1 2 3 4 5

Time (sec)
6
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Example 3
• Disturbance is a constant with an unexpected jump

• Disturbance observer: Sinusoid basis (a "poor" choice)

Disturbance Model: w(t) = cj sin (1)( + c2cos (1)( ~ D - I 0 1] H = [(1) 0]-1_(1)2 0
Observer Basis: c

1
sin(rot) + c

2
cos(rot)

3 ------------------- :----------- ....-- _ w -------- j------/-...,:--------i -------------------- i--------------------
: , I \ I I

2 -------------------~---------------- -- z1 --------+---l----- ------;--------------------+-------------------
: ----- z2 : : ...._.~.~ .... : :

<a> :-;~~~~~~~~~::c~T:~~:~,~~:~· /:>..<~:~~~J~~~~~~~~~~-
"

2 3 4 5

An observer designed for a
sinusoid disturbance successfully
tracks a constant disturbance!

6
The coeffs c1 & c2 are rapidly
changing but the net disturbance
estimate (w) smoothly & accurately
tracks the disturbance

I ,,....,, ,

-----------~------f-----',------t---------------------:--------------------
:, .....: :
: I : :, ,

-w
2 ---------------- _._._ .• c

1
'sin(rol)

________________ ----- c2'COS(rol)

(c) -- c1sin(rol) +c2cos(rol) : '~'~::_c:.:"·_·-·
I ' .-_.- .. - ....o .~:..-:.:.:~:;.:;.:.:.;..-;_:.:=.~~.--:-------"'F - -----------~~,..._t-"'----.-"'-·~l~-------------------

, . ,.'. ,.,.: :
-1 -------------------i---------------------t--------------------l-----~'l- ..,.-"----------t--------------------~--------------------

o 2 3

Time (sec)
4 5 6
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Conclusions

• Disturbance observers demonstrate an ability to "adapt" and
successfullytracka. disturbance with dynamics completely different
from what the observer was designed for
- There are limits to this adaptability. It is always best to pick a basis-set

that is representative of the expected disturbance dynamics
• JtleabilitY.Qf.(lr1()bserv~rd~sigr1~df()ra sinljsoid to track a constant with

JlJmpsoeteribfatesas thefreql.Jehc;y of the sinusoid basis becomes large
relative tothe frequency of the jumps

• Similarly, the performance of a disturbance observer with a constant basis
Junction deteriorates as the Jre_quency of the sinusoid disturbance increases

• Anobserverisaclosedlo.op·subsystem that is structured to drive an
estimate to zero. As a result of this disturbance observers will make
every effort to adjust internalcoe.ffi.cients so that the net error is
minimized. This effect manifests itself as the "adaptive" capability of
a disturbance observer to track disturbances very different from
what it was originally designed for.
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Backup
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Derivation of the function-space Coefficients

• Thedi.sturbanc.e-state z.isreadHy. available from the
observer.M"uehinsightcanbe gained by examining the
dynamics in the function space.
- The disturbance state z can be converted to the cj values in (1)

needed to represent w(t) in the wavefrom model

,

• Disturbance observer .with a "constant + ramp" basis

Therefore

15



Derivation of the function-space Coefficients

C1 . C2
Zl = -. SIn OJ! + - COS OJ!

OJ OJ

Take the derivative ofZl~ .21 = Z2 = CIOOS OJt - C2 sin OJt

Have 2 equations & two unknowns. Solving we find that

C2 == CO Zl cos(cot) - Z2 sin(cot)

cl == (co Zl - c2 cos(co t)) / sineCO t).
16



Example 81
• Disturbance is a sinusoid

• Disturbance observer: Sinusoid basis (a "good" choice)

Disturbance Model: w(t) = c, sin (j)t + c, cos (j)t ~ D = [ _~, ~] H = [(j) 0]

The disturbance is a pure sine with no
phase angle. As one might expect the
c1 coeff goes to 1.0 and the c2 coeff
goes to zero after the initial startup
transient. There is a startup transient
because the initial conditions of the
observer integrators are set to zero.

6

6

5

5

--z1

----- z2

-w

-w

4

4

-------i-------- --c1

3

3

2

2

o

~~ ,
., I " .......... : I

---------------r-----------------l~-.;~::~---------1------------------r- .------- _._0_.- West
I I..... I I

i 1 ..............~.. i: : : .............-......: ....:::_.~..~__-.J
-1 -----------------j------------------l------------------l-------------~~r---p-"='------i----

-1 ~-----'----------'-----"'--------=- ...............~"-'-'-"-'--------'-----==-

o

-0.5

17

6543

Time (sec)

-1 ~------'------------'------'----------"----------'--~
o 2

,--__---,---__-----. ,----__----,----j - w
~....!____-,;,;.:------~------------------:------- -.-.-.- c,'sin(rot)

, : i ----- C 'coS(rot)
0.5 --------. . --l------------------i------------------,------- .;._______ 2

...-,," iii i --c,sin(rot) + c2coS(rot)

(c) 0
'11"... _ ...... __ I , I------------T----i------r-----

I I I I

-0.5 -----------------r-----------------~------------------1----------~--·-···t------------·-

: : : :


