Fatigue Crack Growth in Peened Friction Stir Welds

Scott Forth and Omar Hatamleh
National Aeronautics and Space Administration
Johnson Space Center, Houston, Texas
Overview

♦ Aluminum alloys and testing conditions
♦ Friction stir welding aluminum
♦ Laser and shot peening
♦ Fatigue crack growth testing
♦ Observations
Aluminum alloys

♦ 7075-T73 aluminum
 • Common alloy used in planes, trains, and automobiles

♦ 2195-T8
 • Common alloy in space applications (External Tank)

♦ Welding and Peening
 • Two plates 90 x 15 x 1.25 cm
 • Butt-weld, single pass, tool speed 300 RPM CCW, 15 cm/min
 • Tool shoulder dia. 3.3 cm, probe dia. 0.92 cm
 • Glass shot peening 0.008-0.012A, 200% coverage
 • Laser peening rastered, 3% overlap, 5 GW/cm² for 18 ns, 3 layers offset 33%
Specimen Design and Measurement Locations

Contour measurement plane

- 10 cm
- 20.5 cm
- 41 cm
- 1.25 cm

Retreating Side
Advancing Side

Weid Nugget

400 mm
100 mm

ADVANCING SIDE

0.035 cm
1.9 cm
0.035 cm
0.125 cm

RETEATING SIDE

20 cm
40 cm

Weid Region

December, 2008
Scott Forth, NASA JSC
Residual Stress Measurements – 7075

- Hardness testing performed for reference
- Residual stresses measured using X-ray diffraction and contour method (shown)
- Three dimensional stress field through the specimen thickness
- Stress intensity solution is two-dimensional
- Residual stresses **not** modeled in stress intensity calculations
Fatigue Crack Growth Rate Post-Weld

\[\Delta K_{\text{applied}} \] (MPa m\(^{1/2}\))

\[\frac{da}{dN} \] (meter/cycle)

Baseline

FSW

7075-T73 Aluminum Alloy
Room Temp., Lab Air
FSW - Friction Stir Weld

R = 0.1

R = 0.7
Fatigue Crack Growth Rate Post-Weld, Shot Peened

7075-T73 Aluminum Alloy
Room Temp., Lab Air
FSW - Friction Stir Weld
SP - Shot Peened

Baseline
FSW
FSW, SP

R = 0.1
R = 0.7
Fatigue Crack Growth Rate Post-Weld, Laser Peened

ΔK (MPa m$^{1/2}$)

$\frac{da}{dN}$ (meter/cycle)

- Baseline
- FSW
- FSW, SP
- FSW, LP

7075-T73 Aluminum Alloy
Room Temp., Lab Air
FSW - Friction Stir Weld
SP - Shot Peened
LP - Laser Peened

$R = 0.1$
$R = 0.7$
Crack Length versus Cycles

- Acceleration from welding
 - evident at $R = 0.1$

- Retardation from peening
 - unclear at $R = 0.1$ for shot
Fracture Surfaces – 7075 Aluminum

Base Material

As-welded

Welded, Shot peened

Welded, Laser peened
Fracture Surfaces – 7075 Aluminum

- Baseline
- Friction Stir Weld
- FSW, Shot Peened
- FSW, Laser Peened

7075-T73 Aluminum
Room Temp., Lab. Air
R = 0.1, P$_{max}$ = 88.9 kN
Effect of Temperature - 7075

7075-T73 Aluminum Alloy
Lab Air, R = 0.1
FSW - Friction Stir Weld
SP - Shot Peened
LP - Laser Peened

Baseline

FSW
FSW, SP
FSW, LP

ΔK (MPa m\(^{1/2}\))

da/dN (meter/cycle)

-140° C
23° C

December, 2008
Scott Forth, NASA JSC
Residual Stress Measurements – 2195

- As-welded
- Shot peened
- Laser peened

- Hardness testing performed for reference
- Residual stresses measured using X-ray diffraction and contour method (shown)
- Three dimensional stress field through the specimen thickness
- Stress intensity solution is two-dimensional
- Residual stresses **not** modeled in stress intensity calculations
Crack Growth Rate Data - 2195

2195 Aluminum
25° C, Lab. Air
R = 0.1, M(T)

Base Material
As-welded
Shot Peened
Laser Peened

\(\Delta K_{\text{applied}} \) (MPa m\(^{1/2}\))

\(\frac{da}{dN} \) (meter/cycle)
Effect of Temperature - 2195

- Base Material
 - As-welded
 - Shot Peened
 - Laser peened

2195 Aluminum
Lab. Air, R = 0.1, M(T)

-23°C
-182°C
-140°C

(da/dN) (meter/cycle)

\(\Delta K_{\text{applied}} \) (MPa m\(^{1/2}\))
Fracture Surfaces - 2195

(a) Base -140°C

(b) FSW -140°C

(c) Laser Peen FSW -140°C

(d) Shot Peen FSW -140°C
Fractography – Peening 2195

- Photographs from 182° C
- As-welded to the left, laser peened below
Fractography – Temperature 2195

- Photographs from laser peened
 Room temperature 23° C to the left, 182° C below
Observations

♦ Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget

♦ Shot peening over the weld had little effect on growth rate

♦ Laser peening over the weld retarded the growth rate
 • Final crack growth rate was comparable to the base, un-welded material
 • Crack tunneling evident from residual compressive stresses

♦ 2195-T8 fracture surfaces were highly textured
 • Texturing makes comparisons difficult as the material system is affecting the data as much as the processing
 • Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses