In-Flight Anomalies and Radiation Performance of NASA Missions -
Selected Lessons Learned

Kenneth A. LaBel
Co-Manager, NASA Electronic Parts and Packaging (NEPP) Program
Group Leader, Radiation Effects and Analysis Group (REAG)
NASA/GSFC
ken.label@nasa.gov
301-286-9936
http://nepp.nasa.gov
Outline of Presentation

- Investigative Approach
- An Optocoupler’s Tale
- On the Matter of Small Probabilities
- What’s with the Noise Spikes?
- The Meaning of an Upset in a Fiber Optic Link
- Considerations

Latent damage sites: device did not fail during ground irradiation, but at some time afterward during operation. Could this have been observed in-flight?
Anomaly Resolution –
Root Cause Investigation for Radiation Engineers

• Determine orbital location and time of event
 – Look for the obvious such as solar events or South Atlantic Anomaly (SAA)
• Review electronic parts list for potential sensitive devices
• Review identified device in specific circuit application
 – Factors such as duty cycle, operating speed, voltage levels, and so forth
• Obtain existing SEE, dose, and damage data or gather new data
 – Compare applications between in-circuit and ground data
 – Perform ground testing if needed
• Determine risk probabilities
 – SEE rates, etc
 – Failure potential
• Recommend mitigative action(s) if possible
An Optocoupler’s Tale - Background

- **Optocouplers**
 - Used extensively for the isolation of signals between systems or boxes
 - Translate electrical signals to optical, then back to electrical

- **What radiation-induced failure modes may exist?**
 - Long-term degradation such as current transfer ratio (CTR) – output/input
 - Single particle events
 - Photodiodes, for example, have a history of being used as energetic particle detectors!

![Typical Block Diagram of an Optocoupler](image)
An Optocoupler’s Tale – NASA’s Most Famous Science Spacecraft

- Hubble Space Telescope (HST)
 - Flying for over 18 years
 - Tremendous scientific discoveries (as well as gorgeous images!)
- HST has had several servicing missions (SM)
 - New instruments
 - System upgrades and maintenance
- On the SM2, launched Feb 14th, 1997, two new instruments were installed
 - Multiple anomalies were observed during the on-orbit engineering calibration for these instruments
 - HST’s main radiation concern is SAA
An Optocoupler’s Tale – Resolving the Anomaly

• What steps were needed to determine **ROOT CAUSE** and action?
 – Review of environment during anomalies
 • All events occurred in the SAA
 – Review of parts list
 • Optocoupler highlighted as most likely candidate
 – Review of circuit application
 • SETs simulated showing possible cause
 – SET could trigger a high-voltage portion of the instrument and cause failure
 – Review or gather radiation test data
 • No data existed; accelerator test performed

Typical Measured Transient During Proton Irradiation

63 MeV Proton-Induced Transients on Suspect Device Versus Angular Incidence
The Optocoupler – Final Analysis

• What steps were needed to determine ROOT CAUSE and action? - continued
 – Determine risk probability (i.e., upset rates)
 • Optocouplers are not just electrical
 • Considerations for tools beyond CREME96 began with this and related work
 – Determine actions to mitigate or reduce risk
 • In-flight hardware is not easily modified ;o(
 – FPGAs improve this ability (but not here)
 • Operational change installed via software update
 – No instrument operation during SAA
 – Critical science was NOT impacted, but some science data loss incurred
On the Matter of Small Probabilities - Background

- **Solid State Recorders (SSRs)**
 - A means for storing science data on-board a spacecraft
 - Use high-density memory ICs for density/power advantages
 - SRAM (early 1990’s)
 - DRAM (mid-1990’s and later)
 - Flash (being considered)
- **DRAMs: What radiation-induced failure modes may exist?**
 - TID
 - Traditional leakage increases, cell failures, etc…
 - SEE
 - Destructive: SEL, stuck bits
 - Upset: bit/multiple bits, block errors, mode errors, SEFI

1 Gb SDRAM circa 2006
Feature size is 90nm
On the SM2, Feb 14th, 1997, a new SSR was installed to increase data storage capacity

- HST passes through the SAA several times daily
 - Bit upsets tracked fairly well with predicted rate based on ground data (3 samples, one proton energy)
 - \textbf{HOWEVER}, two more complex anomalies were observed
 - Each had \textasciitilde 100 bits in error (block)
 - Block was not corrected by a re-write

- \textit{Project in panic!}

HST SSR utilizes
Irvine Sensors DRAM Modules
Comprised of 16 Mb IBM Luna DRAMs
On the Matter of Small Probabilities– Resolving the Anomaly

- What steps were needed to determine ROOT CAUSE and action?
 - Review of environment during anomaly
 - SAA
 - Review of parts list
 - Memory controller was rad-hard
 - DRAM was not
 - Review of circuit application
 - Circuit application was the same as in ground testing (refresh rate, etc)
 - Review or gather radiation test data
 - Proton data: no observed block errors (sample size = 3 w/ 1x environment fluences)
 - HOWEVER, heavy ion data exhibited these type of events at low LETs
 - Proton events would be expected
 - New test data required for statistics on 1440 device usage
 - With 1440 devices being used for this SSR application
 - Expected event cross-section of ~a few E-13 cm² based on 2 events in 9 months versus (predicted) in-flight proton fluence
On the Matter of Small Probabilities—Final Analysis

- Review or gather radiation test data (cont’d)
 - New test undertaken with protons with 100 die and to higher proton fluence levels
 - 9 events observed with proton fluences ~100x over expected HST expected levels
 - 2 different event signatures noted
 » block (column/row) errors
 » weak columns (suspect data – sometimes good, sometimes bad)

- Determine risk probability (i.e., upset rates)
 - Predicted error rate of 2.2/yr is the same order of magnitude as observed

- Determine actions to mitigate or reduce risk
 - Reset of mode register or power cycle clear the anomaly
 - Circuitry not included to provide reset
 - Power cycle determined to be feasible when needed
 - Data is Reed-Solomon (RS) Encoded
 » Probability of RS failure is low
 - No action taken at that time
What’s With the Noise Spike? - Background

- Linear devices such as analog comparators are
 - Used extensively in instruments, power, data collection, and more
 - Compares the voltage levels between two analog signals
- What radiation-induced failure modes may exist?
 - Long-term degradation is focused on
 - Enhanced low dose rate sensitivity (ELDRS) and displacement damage (in bipolars)
 - Single events
 - Single event transients (SETs) are the prime concern.

Sample SETs induced by heavy ions in a PM/LM139 comparator
What’s With the Noise Spike? – Microwave Anisotropy Probe (MAP)

 - Had phasing orbits prior to insertion in final orbit.
- An anomaly occurred causing a reset of the spacecraft processor on November 5, 2001.
What’s With the Noise Spike? – Resolving the Anomaly

- What steps were needed to determine ROOT CAUSE and action?
 - Review of environment during anomaly
 - Solar event
 - Significant heavy ion component
 - Review of parts list
 - Analog comparator (PM/LM139) identified as likely problem
What’s With the Noise Spike? – Resolving the Anomaly (2)

- Review of circuit application
 - Confirmed that LM/PM139 could be the cause
 - Application had changed since initial parts review pre-launch
- Review or gather radiation test data
 - No documented proton sensitivity
 - Heavy ion sensitivity documented as a function of the application using existing data plus new data gathered

![Circuit Diagram]

Heavy ion data
What’s With the Noise Spike? – Final Analysis

• What steps were needed to determine ROOT CAUSE and action?
 - continued
 – Determine risk probability (i.e., upset rates with heavy ions)
 • Additional shielding analysis performed for particle transport
 • Assumption of sensitive volume thicknesses
 – Determine actions to mitigate or reduce risk
 • Event rates deemed acceptable by project
 • No action taken

<table>
<thead>
<tr>
<th>Sensitive volume thickness (μm)</th>
<th>GCR SET rate CREME96, solar maximum (event/ comparator-day)</th>
<th>Solar Event CREME96, worst day (event/ comparator-day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.8E-3</td>
<td>5.1E-1</td>
</tr>
<tr>
<td>15</td>
<td>1.7E-3</td>
<td>3.0E-1</td>
</tr>
<tr>
<td>20</td>
<td>1.6E-3</td>
<td>1.8E-1</td>
</tr>
<tr>
<td>30</td>
<td>1.5E-3</td>
<td>6.5E-2</td>
</tr>
<tr>
<td>40</td>
<td>1.3E-3</td>
<td>4.4E-2</td>
</tr>
<tr>
<td>60</td>
<td>9.9E-4</td>
<td>3.4E-2</td>
</tr>
</tbody>
</table>
The Meaning of an Upset in a Fiber Optic Link (FOL) - Background

- **FOLs**
 - MIL-STD-1773 implementation (1 MHz) used since the early 1990’s in many NASA systems
 - Transmits electrical data and command signals to/from optical

- **What radiation-induced failure modes may exist?**
 - Similar to optocouplers
 - SEUs imply single or multi-bit errors
 - Photodiodes, have a history of being used as energetic particle detectors.
 - Errors are temporal via photodiode
 - Transients may affect more than one clock cycle
 - High-speed electrical circuits also sensitive
 - Major impact is on data *bit error rate* (BER)

Representative FOL architecture
The Meaning of an Upset in a Fiber Optic Link (FOL)- Background (cont’d)

• Original MIL-STD-1773 transceivers used Si photodiodes
 – Sensitive to direct ionization from protons
 • Implies high bit error rate (BER) for space applications.
 – Angle of incidence, optical power budget, and proton energy effects noted
• This forced the usage of protocol fault-tolerant features to be implemented (message retries).
 – Used successfully in NASA missions
 • BUT reduced effective bus bandwidth by ~50%.
 • For higher data rate systems, this hardening solution may not be applicable.

Ground data illustrating the effect of optical power budget on radiation performance
The Meaning of an Upset in a Fiber Optic Link (FOL)- Making a Better Mousetrap

- Hardening methodologies explored
 - Change of optical wavelength from 850 nm to 1300 nm light showed improved SEU tolerance
 - Reduced volume of photodiode
 - Receiver noise filtering techniques and optical power budgets also help
 - Higher data rate development (20 MHz) – AS1773
 - Flown as an experiment on Microelectronics and Photonics Testbed (MPTB)
 - Boeing DR1773 Transceivers

MPTB DR1773 Test Board
The Meaning of an Upset in a Fiber Optic Link (FOL) – MPTB Performance

- MPTB launched in 1997
 - 6 years of in-flight performance in a highly elliptical orbit (HEO)
- Transceivers were operated in two modes
 - ED mode used a physical contact (PC) polished fiber optic terminal
 - DE mode used a flat polished connector (air gap)

Which do you think would work better?
The Meaning of an Upset in a Fiber Optic Link (FOL) – In-Flight

- Did the hardening effort pay off?

ED and DE bit error rates by Year

<table>
<thead>
<tr>
<th>Year</th>
<th>ED BER</th>
<th>DE BER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>1.738E-12</td>
<td>N/A</td>
</tr>
<tr>
<td>1998</td>
<td>4.224E-14</td>
<td>3.787E-11</td>
</tr>
<tr>
<td>1999</td>
<td>3.855E-14</td>
<td>5.303E-11</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
<td>8.501E-11</td>
</tr>
<tr>
<td>2001</td>
<td>8.168E-15</td>
<td>N/A</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

![Graph showing number of upsets over Julian Day of Year](image)

Few errors were noted on the “good” PC
Considerations

• Methodical process for anomaly review takes into account
 – Environment
 – Selected parts
 – Design
 – Existing radiation test data and/or new data
 – Impact (i.e., risk probability)
 – Actions (mitigative or otherwise)

• Notes:
 – Design and parts list reviews are good for flight programs
 • BUT, any changes later in design process need to be reviewed as well
 – Protons aren’t always the cause of anomalies during solar events
 • Solar heavy ions must be taken into account
 – System design and not just device radiation tolerance needs to be taken into account
 • Mechanical issues, for example, can be related (as in the FOL example)
 – Spacecraft charging effects not discussed, but should be considered as well
 • *Can charging in plastic packages be the next SEU?*