Progress in NASA Rotorcraft Propulsion

By

Dr. Christopher DellaCorte
NASA Glenn Research Center

Abstract:
This presentation reviews recent progress made under NASA’s Subsonic Rotary Wing (SRW) propulsion research activities. Advances in engines, drive systems and optimized propulsion systems are discussed. Progress in wide operability compressors, modeling of variable geometry turbine performance, foil gas bearings and multi-speed transmissions are presented.
Progress in NASA Rotorcraft Propulsion

By

Christopher DellaCorte
Associate Principal Investigator (API)

Susan M. Johnson
Associate Project Manager (APM)
SRW Propulsion: Background (Motherhood)

- Rotorcraft propulsion is a critical element of the overall aircraft.
- Rotor/propulsion system is used for aircraft lift and forward flight and maneuvering.
- Rotorcraft engine/gearbox system must be highly reliable and efficient.
- Trends call for more versatile and efficient and powerful aircraft challenging propulsion system technologies.
- Advanced tools and methodologies must be developed to design new engine and drive systems.
Engine/drive system focus areas/main research tasks

- Variable Multi-Speed Drive System
- Improved Drive System Analytical Tools
 - Dr. Robert Handschuh
- Optimized Propulsion System
- Oil-Free Engine Technology
 - Dr. Robert Bruckner
- Wide Operability Engine Technology
 - Dr. Michael Hathaway
 - Joseph Veres
<table>
<thead>
<tr>
<th>WBS</th>
<th>TASK</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Variable Multi-Speed Drive System</td>
<td>Propulsion/Rtr Systm Mdl Dev Compl</td>
<td>Validate Variable/Multi Speed Technologies/Concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lumped Mass Dyn Mdl Dev to Eval Speed/Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2</td>
<td>Improved Drive System Analytical Tools</td>
<td>Tech Rpt Assessing Current Gear Windage vs Existing Data</td>
<td>Improv’d Probabilistic Methodology Val’td Gear Bending/Surface Fatigue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gear Windage Prediction Model Validated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.3</td>
<td>Optimized Propulsion System</td>
<td>Tech Rpt Assessing Predictive Mdl Capabil vs Cncpts/Existing Data</td>
<td>Validated Optimized Eng/Gearbox Cncept Demo in Lab Envir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systm Lev Benifits Asnmt/Eng-Gearbox Integration Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4</td>
<td>Oil Free Engine Technology</td>
<td>Foil Bearing Tool Capabil</td>
<td>Database/Valid’n Physics Based Mdl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess Oil Free</td>
<td>Predictive Mdl for Oil Free Engine Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.1</td>
<td>Wide Operability Engine Technology</td>
<td>Assess SOA Tools/Cncepts</td>
<td>Des Guidelines/1 Flow Cntrl Concept Wide Operabil Eng Op</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validated Tool for Modeling 1 Stall Control Concept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>Efficient High Power Density Engine Technologies</td>
<td>Assess SOA Tools/Cncepts</td>
<td>Demo Highly Ld Turbo Sysms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validated Capability/ Des of Highly Ld Compressors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lots of milestones and reports to track progress
SRW Propulsion-Primary Facilities

- **Research Facilities***
 - **Mechanical Components**
 - Existing gear and transmission test cells
 - Gear windage rig and variable speed drive rig in build-up
 - **Tribology**
 - Foil bearing and tribology test rigs, Capstone turbine engine, coating development and manufacturing facilities
 - Surface analysis and metrology capabilities
 - **Turbomachinery**
 - Engine testing capability: current work using modified T700 with stall control technology and variable vane scheduling
 - Compressor test capability: upgrades to CE-18 facility, data collection and test article development collaborations with industry

*At GRC, supported by facilities, engineering design and research technical support divisions.
SRW Propulsion-NRA Collaborations

• Transmissions/Drives
 • High Fidelity CFD Analysis and Validation of Rotorcraft Gear Box Aerodynamics Under Operational and Oil-Out Conditions-Penn State-PI: R. Kunz
 • Comprehensive Modeling and Analysis of rotorcraft Variable Speed Propulsion System with Coupled Engine/Transmission Rotor Dynamics-Penn State-PI: E. Smith/K. Wang

• Oil-Free Technology
 • Prediction of Foil Bearing Performance: A Computational Model Anchored to Test Data: Texas A&M-PI: L. San Andres

• Engines
 • Advanced compressors-NRA award in process

*At GRC, supported by facilities, engineering design and research technical support divisions.
SRW Propulsion: Project Levels Pyramid

Level 4: MDAO Improvements
- Build/Fly as designed, (enhanced fidelity, ~2x better every 5 yrs)

Level 3: Propulsion Aeromechanics Int.
- Integrated Concepts, (engines & drives for slowed rotor capabilities)

Level 2: Drives & Engines Concepts
- Advanced Components, (Variable Speed Drives, Optimized Propulsion, Wide Operability Aero components, Improved engine and drives models, Oil-Free engine bearings)

Level 1: Power Gen. & Trans. Physics
- Fundamental Research, (drive models, engine stall mitigation, foil bearing modeling, tribological coatings and lubricants, gear windage, compressor research, rotordynamics, etc.)

As technologies mature, they climb pyramid towards integration and deployment.
Drives: Gear Windage Test Facility at NASA-GRC
(Under Development)

Dr. Robert F. Handschuh, Army Research Lab, NASA - Glenn
Mark A. Stevens, NASA Glenn Research Center
Penn State Gearbox CFD NRA: CFD Simulations Contribute to Design of NASA Test Rig

Close collaboration between SRW researchers and NRA PI provides mutually beneficial results.

Windage Rig (2008)

NRA COTR-Dr. Robert F. Handschuh, US ARMY/NASA – Glenn
NRA PI-Dr. Roger Kunz, Penn State University-ARL
• Gear tooth bending fatigue
• Effects of surface finish
• Effects of laser peening

Test specimens:
Plunger on tooth
Laser Shot Peening: Modeling vs. Experimental Component Testing

Test Gears (Multiple teeth sectors on each gear allow for repeats)

FE Model of test gear set

FE contact stresses
SRW Propulsion- Oil-Free Engine Technology/ Optimized Propulsion System (R. Bruckner)

- Oil-Free Engine Technology
 - Develop foil gas bearing technologies
 - Manufacturing, solid lubes, predictive tools and experimental tests
 - Demonstrate oil-free engine rotor systems
 - System integration tools, rotor experiments

- Optimized Propulsion Concept
 - Oil-Free engine utilizing S-O-A foil gas bearings
 - Highly loaded gearbox using gear specific high viscosity oil
 - System level studies underway to capture benefits and identify challenges
SRW Propulsion-Oil-Free Engine Technology

- Open source bearing fabrication
- Provide bearings for code validation database development
- Bring new suppliers to market for engine company support

Research thrust foil bearings designed for convenient disassembly, instrumentation and ease of manufacture.
SRW Propulsion-Oil-Free Engine Technology

“Undesirable” Operating Space

“Desirable” Operating Space

Power Loss

Load

Speed
• Oil-Free engine-foil bearings enable higher speed, lower weight
• High power density transmission using high viscosity gear oil
SRW Propulsion-Power Generation Physics

• **Experimental Activities**
 – T700 Active Stall Control Engine Characterization
 • Conducting compressor guide vane scheduling tests
 • Planned blade deflection (light probe) measurement system
 – CE-18 Compressor Facility
 • Re-certification on track for early 2009 restart
 • Calibration existing CC3 compressor
 • Finalizing NRA for advanced compressor research
 • Open to collaborative test projects

• **Propulsion Modeling**
 • Initiated notional design for large civil tilt-rotor class engine
 • ROM 1-D component design (compressor)
NRA: Advanced Compressor design-build

Based upon CC3 compressor hardware

Close collaboration between SRW researchers and NRA PI will provide mutually beneficial results

First research use for CE-18 in many years.

NRA COTRs-J. Welch and E. Braunscheidel
NRA: Pending
• Conceptual Design study of a compressor for a notional Large Civil Tilt Rotor Engine (LCTR2)

• 30:1 pressure ratio at a flow rate of 28 lbm/sec.

• Two main configurations: eight stage and an axial-centrifugal compressor (four axial and two centrifugal stages)

• Preliminary designs appear reasonable

<table>
<thead>
<tr>
<th>Stage ></th>
<th>1 Axial</th>
<th>2 Axial</th>
<th>3 Axial</th>
<th>4 Axial</th>
<th>5 Centrifugal</th>
<th>6 Centrifugal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach Abs Inlet</td>
<td>.53</td>
<td>.47</td>
<td>.47</td>
<td>.40</td>
<td>.47</td>
<td>.47</td>
</tr>
<tr>
<td>Rel Mach Tip</td>
<td>1.50</td>
<td>1.26</td>
<td>1.12</td>
<td>1.00</td>
<td>0.88</td>
<td>0.84</td>
</tr>
<tr>
<td>Press Ratio</td>
<td>2.11</td>
<td>1.69</td>
<td>1.50</td>
<td>1.39</td>
<td>2.60</td>
<td>1.60</td>
</tr>
<tr>
<td>Blade Angle LE</td>
<td>63.1</td>
<td>65.0</td>
<td>63.1</td>
<td>64.5</td>
<td>54.4</td>
<td>54.5</td>
</tr>
<tr>
<td>Blade Angle TE</td>
<td>43.0</td>
<td>51.6</td>
<td>48.3</td>
<td>50.0</td>
<td>30.0</td>
<td>32.2</td>
</tr>
<tr>
<td>Solidity Tip</td>
<td>1.74</td>
<td>1.54</td>
<td>1.43</td>
<td>1.36</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td>Blade Number</td>
<td>23</td>
<td>36</td>
<td>46</td>
<td>56</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Exit Temp (R)</td>
<td>660</td>
<td>783</td>
<td>893</td>
<td>993</td>
<td>1361</td>
<td>1588</td>
</tr>
<tr>
<td>Tip Speed</td>
<td>1500</td>
<td>1452</td>
<td>1360</td>
<td>1300</td>
<td>1845</td>
<td>1571</td>
</tr>
<tr>
<td>Power (HP)</td>
<td>1420</td>
<td>1230</td>
<td>1107</td>
<td>1007</td>
<td>3758</td>
<td>2411</td>
</tr>
</tbody>
</table>
SRW Propulsion-Summary

• Progress:
 • Investments in facilities and capabilities
 • Strong team developed
 • Good balance of analytical and experimental effort
 • Stable agency level support

• Opportunities:
 • Several technologies ready for system level 3 insertion.
 • Test-beds can support industry efforts.
 • Processes in place for collaborations (NRA, SAA, etc.)