Adsorption of Water on JSC-1A Lunar Simulant Samples

Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS.

Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals.

Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques.

For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub-μm sized particles act as nucleation centers.
Adsorption of Water on JSC-1A Lunar Simulant Samples

John Goering, Shweta Sah and Uwe Burghaus
Department of Chemistry, Biochemistry, and Molecular Biology,
North Dakota State University (NDSU),
Fargo, ND 58105, USA

Kenneth W. Street
Tribology and Mechanical Components Branch
NASA – John Glenn Research Center
Cleveland, OH 44135 USA
216-433-5032
kenneth.w.street@nasa.gov

Presented at the Geological Society of America Meeting
Houston TX, October 9, 2008
Water on the Moon

• Possibly in Deep Permanently Shadowed Craters

• Adsorbed
 Multiple layers of H_2O

• Chemi/Physisorbed
 Dipole interaction
 Coordinated
 \[\text{O}_{(X-1)}\text{MO} \rightarrow \text{HOH} \]
 \[\text{O}_X\text{M} \rightarrow \text{OH}_2 \]

• Reacted
 Metals (Metal Oxides)
 \[\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \]
Lunar Hydrogen Map

Hydrogen as ...? Implanted H?? Water???
If Water Exists on the Moon, Then How?

- Use JSC-1A Simulant (fine powder)
- Clean Surface (UHV)
- Apply a Few Mono-Layers Water
 (UHV – Very Low Temp)
- Follow Desorption (TDS)
- Correlate with Other Studies of Terrestrial Systems

TDS is Thermal Desorption Spectroscopy
(Heat Sample, follow Mass Spectrometry)
The JSC-1A Mounted Sample

Images Before (left) and After (right) show No Sintering.
Examination of TDS from Si Mounting Substrate

Single well defined peak at Low Exposures (Water adsorbed at 90 K:
1) independent of exposure
2) first order kinetics
=> NO Dissociation on substrate
Examination of TDS from JSC-1A on Substrate

ASW = Amorphous Solid Water
CW = Cluster Water
CI = Crystalline Ice

$\alpha_1 = 2\text{OH}_{\text{Ads}} \rightarrow \text{H}_2\text{O}_g + \text{O}_{\text{Ads}}$
α_2 and α_3 = OH-H$_2$O Clusters

Note: 1L is ~ 1 Monolayer
this relationship is NOT linear
(4L ~ 6 ML and 12L ~ 50 ML)

Water Adsorbed at 90 K
JSC-1A has a 92% probability of adsorbing water at
1) Low Temp and
2) low surface coverages.

These caveats are realistic for Lunar Conditions!

Integrated Absorption Isotherm
(Adsorption Probablility vs Coverage)
Adsorption at 153 K and 1×10^{-12} bar
Concluding Remarks

• Water can realistically adsorb on JSC-1A under Lunar Conditions
• Water adsorbs to JSC-1A by Chemical pathway

\[2\text{OH}_{\text{Ads}} \leftrightarrow \text{H}_2\text{O}_\text{g} + \text{O}_{\text{Ads}} \]

• These studies should be applied to Lunar Regolith

The authors Greatfully acknowledge:
- Discussions with Phil Abel and James Gaier (NASA Glenn),
- Duane Dixon (NASA Glenn) collecting the SEM data,
- M. Komarneni (NDSU) equipment construction
- Financial support from ND NASA EPSCoR
- NASA Dust Mitigation Project
 of the Exploration Technology Development Program
Blank Slide
Water + Alkane Coadsorption

Figure 5.—(a) and (b) n-pentane thermal desorption spectroscopy (TDS) data obtained for the JSC-1a at large and small (inset) exposures. (c) Co-adsorption of n-pentane and water on JSC-1a/silica. The pentane exposure has been kept constant (33 L) and the water exposure varied, as indicated ($T_{ads} = 90$ K).

Coadsorption with inert (non polar) gas yields information about growth morphology of Ice Layers