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In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 
24k) was examined by impacting 2’X2’X0.125” composite panels with gelatin projectiles. Several high strength, intermediate 
modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of 
penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship 
between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras 
were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. 
However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of 
impact resistance observed. 
 
In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, 
compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from 
microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were 
easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane 
surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure 
criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the 
microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial 
explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with 
methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be 
presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic 
impact of large unit cell size triaxial braid composites. 
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Triaxial Braided Composite Materials

•

 

Two dimensional triaxial braid
•

 

24k wide axial and 12k wide bias fiber tows
•

 

Layers of +60o

 

and -60o

 

bias fibers braided over a 0o

 

axial fiber 
•

 

Quasi-isotropic architecture
•

 

Layup

 

of 6 Layers of braid, total composite thickness 0.125”
•

 

Resin Transfer Molding process (RTM)
•

 

Volume fraction of 56% nominal
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Materials
•

 

High Strength, Standard Modulus Fiber –

 

Toray T700
•

 

Two resins 
–

 

Toughened Cytec Cycom

 

®

 

PR520
–

 

Untoughened Hexcel 3502

•

 

Presented as examples to cover range of material response

T700 / PR520T700 / 3502
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Model Development

•
 

Testing and modeling were done in parallel
–

 

Test data used optical measurement techniques to obtain full 
field strain data
•

 

Quasi-static Testing 
–

 

By examining the test data and using classical composite 
theory, a new approach was developed to model composites 
using a novel “Subcell”

 

approach

•
 

Modeling data needs
–

 

Composite section properties –

 

braid geometry
–

 

Composite material properties –

 

test data

•
 

Models developed in LS-DYNA
–

 

Transient, nonlinear, explicit finite element code
–

 

Primarily impact loading that composites will be subjected
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Photogrammetry used for Data Collection

•

 

Global stress vs. strain curves found by creating a “digital strain gage”
•

 

Measures material response in specific areas on specimen
–

 

Seen by noting lines of high localized strain
•

 

Local failure mechanisms and deformations must be accounted for when 
developing an analytical method 

Local Point Strain
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Triaxial Braided Model Methodology
•

 

Develop a macromechanical finite element model capable of capturing the braid 
architecture and material properties of triaxially braided composites

–

 

Layers of unidirectional lamina stacked in a “Subcell”

 

configuration
–

 

Needs local lamina level modulus and failure properties

Y
X

Z
X Y

X

Y
X

Subcell
A

Subcell
B

Subcell
C

Subcell
D

Z
X

0.2”

0.7”
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Defining the Braid Geometry (Section)

•
 

Each part has unique section properties
–

 

Each section contains information about number of layers 
(15) and braid angle (Θ) at each layer

•
 

Braid was modeled as layers of unidirectional lamina
–

 

Shifted (Idealized)
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A New Methodology Developed for Implementation 
of Material Properties

•

 

Items needed
–

 

Fiber properties -

 

Assumed
–

 

Matrix properties
•

 

Stackup

 

sequence

Obtain Fiber, Matrix Properties

Micromechanics
-

 

Develop effective lamina properties

CLPT
-

 

Develop effective laminate properties

Obtain Composite stresses, strains
From optical measurements

CLPT 
-

 

Back out effective laminate properties

Micromechanics
-

 

Back out effective lamina properties

Traditional Approach
(Bottom -

 

Up)
New Approach

(Top –

 

Down)

Develop a FEM
(One layer, homogenized)

Develop a FEM
(includes layers and subcell props)

•

 

Items needed
–

 

COMPOSITE TEST DATA
•

 

Stackup

 

sequence
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$$$$ USING AS TESTED T700s/PR520 Material Properties and mat 158
*MAT_RATE_SENSITIVE_COMPOSITE_FABRIC     
$      MID        RO        EA        EB      (EC)      PRBA      TAU1    GAMMA1                
         11.6680E-04   7.45E+6   3.63E+6                .071
$      GAB       GAC       GCA    SLIMT1    SLIMC1    SLIMT2    SLIMC2     SLIMS
  2.75E6                                                1         
$    AOPT      TSIZE     ERODS      SOFT        FS
      2.0                  1                  -1
$                                     A1        A2        A3
                                     0.0       1.0       0.0
$                                     D1        D2        D3 
                                     1.0       0.0       0.0
$     E11C      E11T      E22C      E22T       GMS
     0.018    0.0216     0.011    0.0168     0.012
$       XC        XT        YC        YT        SC   
  5.469E+4  1.515E+5   5.00E+4   5.25E+4  4.457E+4  
$        K
  6.762E+6

Material Card
 MAT_RATE_SENSITIVE_COMPOSITE_FABRIC

Material Response Properties
Property Value
EA Axial Modulus
EB Trans. Modulus
PRBA In Plane Poisson
GAB In Plane Shear Mod.

Failure Properties

Property Name Property Value

E11C Comp. strain (Ax.) XC Comp. strength (Ax.)

E11T Tens. Strain (Ax.) XT Tens. Strength (Ax.)

E22C Comp. strain (Trans.) YC Comp. Strength (Trans.)

E22T Tens. strain (Trans.) YT Tens. Strength (Trans.)

GMS Shear strain SC Shear Strength 

Material Coordinate Definition

Controls elastic/plastic 
behavior of failure
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Classical Laminated Plate Theory (CLPT)
 Use in Reverse for Top-Down Approach

•

 

Stresses/Surface Tractions are related to strains by the 
following 
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•

 

Balanced and Symmetric (B and D matrices, also A16, A26 = 0)

•

 

Where
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•

 

E11, E22, v12, v21, G12 are parameters needed in LS-DYNA
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Equation Development 
Micromechanics of Composite Materials assumptions
•

 

Transverse ASTM 3039 specimen
–

•

 

Axial ASTM 3039 specimen
– 0==== d
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•

 

Strains are found using the optical measurement system
•

 

In the end, there are 6 variables (Q11,Q12,Q22,Q66,Nya,Nyb) 
and 6 equations

–

 

2 from TT Subcells A and C (CLPT)
–

 

2 from TT Subcells B and D (CLPT)
–

 

1 from volume fraction averages (Micromechanics)
–

 

1 from AT Subcells A and C (CLPT)
•

 

Solve simultaneously

Developed Equations (using Subcell Strains)  

Transverse Tensile Test 
Global Axial Strain Local Subcell Strains

Subcell B

Subcell A
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Axial Tensile (AT) Strength

•
 

Assume that in AT tests, the AT fiber carries most of 
the load

•
 

E11T comes from ultimate strain at AT
 

failure
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Transverse Tensile (TT) Strength

•

 

Look at fiber splitting on TT 
specimen

•

 

Load at first split will be YT
•

 

SLIMT will be set to 1
•

 

E22T will be set to failure 
strain of test

E22T = .014

Fibers Start Splitting

Strain

St
re

ss

EB

YT

E22T

SLIMT = 1
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Compressive Strain/Strength
•

 
Material behaves as a homogenous 
–

 

Use strength at failure for both Axial and Transverse tests
–

 

Use strain at strength for both Axial and Transverse tests

Transverse CompressionAxial Compression
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Shear Strength

•

 

Using Modified Shear Specimen Design based on 
Kohlman

–

 

ASTM 5379
•

 

Pxy

 

, Nxy

 

is for each of the integration layers
–

 

Can be directly implemented for shear strength
•

 

LS-DYNA needs εxy

 

for GMS

Pxy

-60o

0o

+60o

+60o

-60o
0o

-60o

+60o +60o

-60o

Y

X

X

Z Pxy
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Finite Element Models

•

 

Both Axial and Transverse 
Specimens were developed 
using ASTM D3039 
specimen geometries

•

 

Fixed end boundary 
conditions were used to 
simulate the fixed grip

•

 

Loading was applied at the 
opposite end using enforced 
displacement

Unit Cell

Unit Cell
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Static Results
 T700 / PR520                                      T700 / 3502
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Strength – 8%
Modulus – 9%

% Error
Strength – 12%
Modulus – 7%

% Error
Strength – 10%
Modulus – 4%

% Error
Strength – 25%
Modulus – 6%
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Determination of T700 fiber / PR520 Resin 
Impact Characteristics

•

 

Simulations were completed Spring 2008
–

 

Showed penetration threshold at 630 ft / sec
•

 

Used as a starting point for impact tests
•

 

Impact tests conducted Summer 2008
–

 

Penetration threshold was between 609 and 637 ft / sec
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Limitations: Delaminations for T700 fiber / 3502 
resin

•

 

OOP displacements verified by 
NDE

•

 

Global Material response curves 
become non-linear after 
delaminations occurred

•

 

Due to the nature of integration 
point formulation, cannot 
simulate ultimate failure values 
between layers



21

National Aeronautics and Space Administration

www.nasa.gov

•

 

Transverse Tension (axial strain)•

 

Axial Tension (axial strain)

Optical Measurements LS-DYNA Optical Measurements LS-DYNA

Limitations: FEM cannot simulate fiber bundle 
splitting
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Conclusion
•

 

Standardized test methods in conjunction with an optical 
measurement system have been used to collect material 
property data for triaxial braided composite materials
–

 

Global material response curves
–

 

Local transverse fiber bundle splitting
–

 

Local subsurface delaminations
•

 

A hybrid micro-macromechanical computer model has been 
developed
–

 

Incorporates braid architecture
–

 

Incorporates tested material property data
•

 

Comparisons between test and simulation show good 
agreement
–

 

10% in static simulations
–

 

Penetration threshold in impact simulations
•

 

Factors seen in the test data cannot be simulated as of now
–

 

Ongoing work
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Backup
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Equation Development –
 

Transverse Tensile 
Testing

d
x

c
x

b
x

a
x NNNN ===

•

 

Use ASTM 3039 Transverse Tensile coupon geometry
•

 

Classical composite uniform stress/uniform strain assumption yields
•

 

(Parallel to loading)
•

 

(Perpendicular to loading)

b
y

b
f

a
y

a
f NVNV ** =

xx NP ,A B C D
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Rewriting the equations for each Subcell
 (Transverse Tensile Testing)
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•
 

Subcell A
–

 

Nx

 

is applied load and all strains are found from optical 
measurement system

•
 

Subcell B
–

 

Nx

 

is applied load and all strains are found from optical 
measurement system

•
 

Four Equations 
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xx NP ,
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Equation Development –
 

Axial Tensile Testing

a
y

aa
x

aa
y AAN εε *22*120 +==

•
 

Classical composite laminate micromechanics 
assumptions yield
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Advanced Data Analysis
 Toughened Fiber Bundle Splitting – Transverse Testing

•

 

Identify local failure strain 
•

 

Local failure initiation 
correlations to global non-

 
linearities 0

200
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T700 Fiber / PR520 Resin Static Results
Axial Tension
Modulus 
(psi)

Axial Tension
Strength
(psi)

Test 6.8E6±1.6E5 1.52E5±4.9E3

LS-DYNA 7.4E6 1.31E5

% Error 7% 12%

Transverse 
Tension Modulus 
(psi)

Transverse
Tension
Strength 
(psi)

Test 6.2E6±2.3E5 8.69E4±4.3E2

LS-DYNA 5.6E6 9.38E4

% Error 9% 8%

Axial Tension

Transverse Tension
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