
1 © 2008 Fraunhofer CESE1

Analyzing the Core Flight Software Analyzing the Core Flight Software
(CFS) with SAVE(CFS) with SAVE

Dharmalingam Ganesan (dganesan@fc-md.umd.edu)
Dr. Mikael Lindvall (mlindvall@fc-md.umd.edu)
David McComas (David.C.McComas@nasa.gov)

DaveDave’’s Flight Software Groups Flight Software Group

© 2008 Fraunhofer CESE2

Fraunhofer – a short intro

• Fraunhofer Center Maryland
– Applied research and technology transfer
– Not for profit
– Affiliated with the University of Maryland

• CEO also full professor in Computer Science, UMD
– Sister institute in Kaiserslautern, Germany

• Business model
– Conducts applied research in software architecture, verification &

validation, process improvement and measurement
– Contract research for industry and government clients

• Clients/partners:
– Bosch, Biofortis, DOD, FDA, JHU, JHU/APL, NASA…..

– Receives NSF grants in software engineering

Context of this Collaboration

• Fraunhofer CESE received a NASA IV&V SARP grant on
software architecture evaluation

• SAVE technology is partly funded by the SARP grant

• One component is outreach to NASA projects
– Apply to various kinds of software systems
– Get feedback, improvement suggestions

• Technology AND Project
– Share, publish results

CFS – Core Flight Software?

• CFS is project-independent flight software (FSW) that
provides a runtime environment and a set of FSW
applications

• Applications that comply with CFS API’s can be reused
for multiple missions

• CFS is designed for reuse using sound engineering
principles, such as Layering, Modularity, Product Line

• Challenge: How to check whether CFS implementation
and Applications follow the intended design rules to
ensure “long-term” reuse

The SAVE Tool

• Sample problem: How do you “understand” and “check”
a larger software system?
– Starting by looking at each line of code might not be feasible

• SAVE can automatically extract architectural views from
the implementation (source code)

• SAVE can check the compliance of source code with the
planned architecture (if any)

• Set of Eclipse plug-ins
• Supports C/C++, Java, Delphi, Simulink etc

Application-Specific
Modules

Encapsulation of
client/server interface

Encapsulation of socket
communications

A Planned Architecture

The Actual Application Architecture

Where’s socket implemented?

Dependency in
actual, not in

planned

Dependency
in planned,

not in actual

The Actual Architecture vs. The Planned

But, who does socket
communicate with?

Applying SAVE to CFSApplying SAVE to CFS
--A few example analysesA few example analyses

Goals

• Check if CFS implementation is consistent with design
goals

• Evaluate and propose improvements of the CFS structure

• Check if all CFS applications have uniform look-and-feel

• Analyze variability potential of the CFS

12

Implemented High-level View of CFS

This implemented view is consistent with the design guideline:This implemented view is consistent with the design guideline:

CfeCfe--appapp should use should use CfeCfe--corecore, but not vice, but not vice--versaversa

13

Implemented View of Cfe-Apps

No two applications are allowed to interact directly, and shouldNo two applications are allowed to interact directly, and should
instead use a bus to communicateinstead use a bus to communicate
Yes. The code does follow the design ruleYes. The code does follow the design rule

Design RuleDesign Rule

Implemented View of CFE Core

Avoid cyclic dependencies (Basic design principle)Avoid cyclic dependencies (Basic design principle)
The dependency from os to src is avoidable by movingThe dependency from os to src is avoidable by moving
the the ““common_types.hcommon_types.h”” from src to os.from src to os.

Design RuleDesign Rule

15

Implemented View of Cfe-core Services

CommentsComments
These dependencies are valid, These dependencies are valid,
and necessary according to the and necessary according to the
CFS team.CFS team.

The SAVE analysis helped toThe SAVE analysis helped to
Validate the planned designValidate the planned design

Question:Question:

Is it possible to deliver CfeIs it possible to deliver Cfe
Without table service?Without table service?

Analysis of CFS Applications

• SAVE was used to analyze dependencies from CFS apps
to cfe core services

• The following applications were analyzed:
1. HK – Housekeeping
2. MD – Memory Dwell
3. MM – Memory Manager
4. CS – Checksum
5. FM – File Manager
6 . LC – Limit Checker

Analysis of Applications to CFE Dependencies

CFS Design Rule:CFS Design Rule:
Applications should not directly use Applications should not directly use
arch and osarch and os

Analysis of Applications to CFE Dependencies …

Analysis of MM to CFE Dependencies

Problem:Problem:
mm_load.h directly uses mm_load.h directly uses
os by directly including os by directly including
““osapiosapi--osos--filesys.hfilesys.h””

Solution:Solution:
Just remove that includeJust remove that include
statement. mm_load.h statement. mm_load.h
already includes cfe.h already includes cfe.h
which includes which includes ““osapi..osapi..””

Analysis of FM to CFE Dependencies

Problem:Problem:
fm_cmds.cfm_cmds.c directly uses directly uses
osos by directly including by directly including
““osapiosapi--osos--filesys.hfilesys.h””

Solution:Solution:
Just remove that includeJust remove that include
statement. statement. fm_cmds.hfm_cmds.h
already includes already includes cfe.hcfe.h
which includes which includes ““osapiosapi....””

Analysis of Applications to CFE Dependencies

Executive Service (ES) Event Service (EVS) Software Bus (SB) Table Service (Tbl) File Service (FS) Time Service
House Keeping (HK) X X X X
Memory Dwell (MD) X X X X
Memory Manager (MM) X X X X
Check Sum (CS) X X X X
File Manager (FM) X X X X X X
Limit Checker (LC) X X X X X

••All applications are directly using: All applications are directly using:
Executive service to initializeExecutive service to initialize
Event service for communicationEvent service for communication
Software bus to send/receive messagesSoftware bus to send/receive messages

••However, we still need all However, we still need all cfecfe services because Es, services because Es, EvsEvs, and SB depend, and SB depend
on Table, File and Time Service on Table, File and Time Service

••More analysis is needed to validate and introduce appropriateMore analysis is needed to validate and introduce appropriate
Variability management techniqueVariability management technique

Conclusion and Future Work
• CFS implementation does follow its planned design

– There are some deviations from the design which needs further
analysis

• By SAVE analysis, the distance between design and code
can be significantly reduced!

• Future Work:
– Dynamic dependencies among applications will be extracted

using runtime execution and analysis of logs
– Ordering of messages among applications will have to be

analyzed
– Timing information will be collected to check and resolve

bottlenecks due to the interaction through message bus

	Analyzing the Core Flight Software (CFS) with SAVE
	Dave’s Flight Software Group
	Fraunhofer – a short intro
	Context of this Collaboration
	CFS – Core Flight Software?
	The SAVE Tool
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Goals
	Implemented High-level View of CFS
	Implemented View of Cfe-Apps
	Implemented View of CFE Core
	Implemented View of Cfe-core Services
	Analysis of CFS Applications
	Analysis of Applications to CFE Dependencies
	Analysis of Applications to CFE Dependencies …
	Analysis of MM to CFE Dependencies
	Analysis of FM to CFE Dependencies
	Analysis of Applications to CFE Dependencies
	Conclusion and Future Work

*

© 2008 Fraunhofer CESE

*

Analyzing the Core Flight Software (CFS) with SAVE

 Dharmalingam Ganesan (dganesan@fc-md.umd.edu)

Dr. Mikael Lindvall (mlindvall@fc-md.umd.edu)

David McComas (David.C.McComas@nasa.gov)

© 2008 Fraunhofer CESE

*

Dave’s Flight Software Group

© 2008 Fraunhofer CESE

*

© 2008 Fraunhofer CESE

Fraunhofer – a short intro

		Fraunhofer Center Maryland

		Applied research and technology transfer

		Not for profit

		Affiliated with the University of Maryland

		CEO also full professor in Computer Science, UMD

		Sister institute in Kaiserslautern, Germany

		Business model

		Conducts applied research in software architecture, verification & validation, process improvement and measurement

		Contract research for industry and government clients

		Clients/partners:

		Bosch, Biofortis, DOD, FDA, JHU, JHU/APL, NASA…..

		Receives NSF grants in software engineering

		

Context of this Collaboration

		Fraunhofer CESE received a NASA IV&V SARP grant on software architecture evaluation

		SAVE technology is partly funded by the SARP grant

		One component is outreach to NASA projects

		Apply to various kinds of software systems

		Get feedback, improvement suggestions

		Technology AND Project

		Share, publish results

CFS – Core Flight Software?

		CFS is project-independent flight software (FSW) that provides a runtime environment and a set of FSW applications

		Applications that comply with CFS API’s can be reused for multiple missions

		CFS is designed for reuse using sound engineering principles, such as Layering, Modularity, Product Line

		Challenge: How to check whether CFS implementation and Applications follow the intended design rules to ensure “long-term” reuse

The SAVE Tool

		Sample problem: How do you “understand” and “check” a larger software system?

		Starting by looking at each line of code might not be feasible

		SAVE can automatically extract architectural views from the implementation (source code)

		SAVE can check the compliance of source code with the planned architecture (if any)

		Set of Eclipse plug-ins

		Supports C/C++, Java, Delphi, Simulink etc

Application-Specific Modules

Encapsulation of client/server interface

Encapsulation of socket communications

A Planned Architecture

*

The Actual Application Architecture

Where’s socket implemented?

*

The Actual Architecture vs. The Planned

Dependency in actual, not in planned

Dependency in planned, not in actual

But, who does socket communicate with?

Applying SAVE to CFS

-A few example analyses

Goals

		Check if CFS implementation is consistent with design goals

		Evaluate and propose improvements of the CFS structure

		Check if all CFS applications have uniform look-and-feel

		Analyze variability potential of the CFS

*

Implemented High-level View of CFS

This implemented view is consistent with the design guideline:

 Cfe-app should use Cfe-core, but not vice-versa

*

Implemented View of Cfe-Apps

No two applications are allowed to interact directly, and should

instead use a bus to communicate

Yes. The code does follow the design rule

Design Rule

Implemented View of CFE Core

Avoid cyclic dependencies (Basic design principle)

The dependency from os to src is avoidable by moving

the “common_types.h” from src to os.

Design Rule

*

Implemented View of Cfe-core Services

Comments

These dependencies are valid,

and necessary according to the

CFS team.

The SAVE analysis helped to

Validate the planned design

Question:

Is it possible to deliver Cfe

Without table service?

Analysis of CFS Applications

		SAVE was used to analyze dependencies from CFS apps to cfe core services

		The following applications were analyzed:

HK – Housekeeping

MD – Memory Dwell

MM – Memory Manager

CS – Checksum

FM – File Manager

LC – Limit Checker

Analysis of Applications to CFE Dependencies

CFS Design Rule:

Applications should not directly use

arch and os

Analysis of Applications to CFE Dependencies …

Analysis of MM to CFE Dependencies

Problem:

mm_load.h directly uses

os by directly including

“osapi-os-filesys.h”

Solution:

Just remove that include

statement. mm_load.h

already includes cfe.h

which includes “osapi..”

Analysis of FM to CFE Dependencies

Problem:

fm_cmds.c directly uses

os by directly including

“osapi-os-filesys.h”

Solution:

Just remove that include

statement. fm_cmds.h

already includes cfe.h

which includes “osapi..”

Analysis of Applications to CFE Dependencies

		All applications are directly using:

		Executive service to initialize

		Event service for communication

		Software bus to send/receive messages

		However, we still need all cfe services because Es, Evs, and SB depend

on Table, File and Time Service

		More analysis is needed to validate and introduce appropriate

Variability management technique

Sheet1

			

						Executive Service (ES)			Event Service (EVS)			Software Bus (SB)			Table Service (Tbl)			File Service (FS)			Time Service

			House Keeping (HK)			X			X			X			X

			Memory Dwell (MD)			X			X			X			X

			Memory Manager (MM)			X			X			X						X

			Check Sum (CS)			X			X			X			X

			File Manager (FM)			X			X			X			X			X			X

			Limit Checker (LC)			X			X			X			X						X

Sheet2

			

Sheet3

			

Conclusion and Future Work

		CFS implementation does follow its planned design

		There are some deviations from the design which needs further analysis

		By SAVE analysis, the distance between design and code can be significantly reduced!

		Future Work:

		Dynamic dependencies among applications will be extracted using runtime execution and analysis of logs

		Ordering of messages among applications will have to be analyzed

		Timing information will be collected to check and resolve bottlenecks due to the interaction through message bus

