Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Objective: High Conversion Efficiency

- Reduces Mass, Volume & Cost

Heat to Electric Power Generation

Voltage: n-type \(e^- \) \(e^- \) \(e^- \)

\(p^- \) \(h^+ \) \(h^+ \)

Load

- \(T_{hot} \)
- \(T_{cold} \)

- **ZTave~0.88** \(\text{Zintl/Nano Si-Ge} \)
- **ZTave~0.75** \(\text{Nano Si-Ge} \)
- **ZTave~0.55** \(\text{RTG Si-Ge} \)
- **ZTave~1.1** 2x Improvement
- **ZTave~1.6** 3x Improvement

Space Power Generation

- **Conversion Efficiency (%)**
- **Specific Power (W/kg)**

- **ZT~2.0** \(\text{GPHS-RTG} \)
- **ZT~1.1** 2x Improvement
- **ZT~1.6** 3x Improvement
- **ZT~0.76** \(\text{Nano Si-Ge} \)
- **ZT~0.88** \(\text{Zintl/Nano Si-Ge} \)
- **ZT~0.55** \(\text{RTG Si-Ge} \)

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption \(\sim 29 \) tera-kWh \((10^{12}) \)
 - Barrels of Oil – 170 giga-barrels \((10^9) \)
- World-energy consumption \(\sim 120 \) tera- kWh \((10^{12}) \)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO\(_2\) emission
Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa} \]

\(S \) - Seebeck coefficient
\(\sigma \) – electrical conductivity
\(\kappa \) – thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT} + T_{\text{cold}}/T_{\text{hot}}} \]

Phonon Scattering:
• Atom disorder
• Supperlattices
• Alloying
• Crystal Structures
• Anharmonic vibrations
• Nano-technology

Fleurial/Chen – JPL/MIT
Fabrication of Nanostructure Solids

Goal: Preservation of the nanostructure during fabrication.

Chen/MIT-κ Reduction

1 nm Thick GB

Nano-powder Synthesis

Thermal Densification
Pressure Assisted
Microwave
Laser
Plasma-SPS/P²C

Cold Densification
Cold Spray
Dynamic Compaction
Plastic Deformation

Post Process

Thermodynamics
Phase Transformation
Precipitation
Spinodal Decomposition

Inhibit Grain Growth
•Rapid Thermal Process
•Inclusions

% Atoms in Grain Boundary

Alloy Limit

Microstructure Dependent on Thermal Aging
•Composition Limited

Si/Ge

1 nm Thick GB

K Reduction

www.nasa.gov
Spinodal Decomposition

Desired Features
- ~50 nm grains
- High Temperature
- Wide Composition
- Large Δ Mass

Transparent Conducting Oxides
- Large Bandgap 2.4-3.8 ev
- N-type –Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ (S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8×10^5</td>
</tr>
<tr>
<td>In_2O_3</td>
<td>1×10^6</td>
</tr>
<tr>
<td>SnO_2</td>
<td>2.5×10^5</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3×10^5</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7×10^4</td>
</tr>
<tr>
<td>CdSnO$_2$</td>
<td>7.7×10^4</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7×10^6</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ZnO:Al $\text{ZT}=0.3$ @ 1000 °C

Fig. 10. TEM image of (Ti$_{0.5}$/Sn$_{0.5}$)O$_2$ ceramics annealed for 48 h.
Experimental

SnO₂
Purity: 99.9%
APS: 50 nm
SSA: 14.2 m²/g

TiO₂ Rutile
Purity: 99.99 %
APS: 20 nm,
SSA: > 30 m²/g

Dopants
CoO,MnO,
Ta₂O₅, In₂O₃

TiO₂/SnO₂
50/50 mol %
75/25 mol %
25/75 mol %

Powder Mixing
Compaction Die Press
Reactive Sintering
1250-1550 °C

Seebeck/Resistivity

Thermal Conductivity

- Laser Flash Method- Thermal Diffusivity
- Standard
- Specific Heat-Laser Flash
- Thermal Conductivity (K = αρCₚ)

ΔT 0-50 °C/Furnace RT-1000 °C
Sintering

Sintering-Controlled By SnO₂

- **Surface Diffusion** < 1100 °C
- **Evaporation** > 1100 °C

SnO₂ → SnO + ½O₂(g)

Sintering-Inhibited

- 50/50 TiO₂/SnO₂
 - 1625 °C

- 75/25 TiO₂/SnO₂
 - 1550 °C

50/50 TiO₂/SnO₂

- Phase Separation

Ta₂O₅ & In₂O₃

- Ineffective Sintering Aids

 \[Ta₂O₅ \rightarrow 2Ta^{\bullet}_{Ti,Sn} + 2e^{\bullet} + \frac{1}{2}O₂ \]

 \[In₂O₃ \rightarrow 2In^{\bullet}_{Ti,Sn} + 2V_O^{\bullet} \]

Sintering Aids

- MnO, CoO, CuO, ZnO

 \[CoO \rightarrow Co_{Ti,Sn}^{\bullet} + V_O^{\bullet} \]
75/25 TiO₂/SnO₂

1% Ta₂O₅

1% In₂O₃

XRD-Phases
Sintered – (Ti_{0.8}Sn_{0.2})O₂
Reduced – TiO₂, Rutile
(Ti_{0.8}Sn_{0.2})O₂

1% Ta₂O₅

GB Phase

1% CoO XRD
Sintered – (Ti_{0.8}Sn_{0.2})O₂
(Ti_{0.2}Sn_{0.8})O₂
Annealed – (Ti_{0.9}Sn_{0.1})O₂
1000 °C (Ti_{0.1}Sn_{0.9})O₂

1% MnO XRD
Sintered – (Ti_{0.8}Sn_{0.2})O₂
(Ti_{0.2}Sn_{0.8})O₂
Annealed – (Ti_{0.9}Sn_{0.1})O₂
1000 °C (Ti_{0.1}Sn_{0.9})O₂

Phase Separation
50/50 TiO$_2$/SnO$_2$

XRD-Phases
- Sintered: (Ti$_{0.8}$Sn$_{0.2}$)O$_2$ (Ti$_{0.1}$Sn$_{0.9}$)O$_2$ (Ti$_{0.9}$Sn$_{0.1}$)O$_2$
- Annealed: (Ti$_{0.8}$Sn$_{0.2}$)O$_2$ (Ti$_{0.1}$Sn$_{0.9}$)O$_2$

1% CoO

1% MnO

Microstructure Coarsening @ 1600 °C

Grain Boundary Phases Segregation
Electrical Conductivity

- Ta₂O₅ – Increases σ – $E_a \sim 0.25$ ev
- (TiₓSn₁₋ₓ)O₂₋ₚ – Oxygen Deficiency Increases σ – $E_a \sim 0.06$ ev
- Co-doping-Ta₂O₅/CoO - Increases σ – $E_a \sim 0.5-0.7$ ev
- In₂O₃, MnO & CoO – Ineffective in Enhancing σ – $E_a \sim 1-4.2$ ev
Seebeck Coefficient

- **N-type**
- Large Seebeck coefficients >-400 μV/K
- Large Seebeck coefficient – Low σ
- \((Ti_{0.5}Sn_{0.5})O_{2-y}\) low Seebeck ~ 0
• Compositions exhibit low κ – 1.7 to 6.8 W/mK
• Observe no dependence on composition or post treatments
• Spinodal Decomposition – κ reduction?
• Best ZT ~ 0.05
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.