Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA Glenn, USA; Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Heat to Electric Power Generation

Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Space Power Generation

- **ZTave~0.75**
 - Zintl/Nano Si-Ge
- **ZTave~0.55**
 - RTG Si-Ge
- **ZTave~1.1**
 - 2x Improvement
- **ZTave~1.6**
 - 3x Improvement

Waste Heat to Power

- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh (10^{12})
 - Barrels of Oil – 170 giga-barrels (10^9)
- World-energy consumption ~120 tera-kWh (10^{12})
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO$_2$ emission

Specific Power (W/kg) vs. Conversion Efficiency (%)

- ZTave~0.75 Nano Si-Ge
- ZTave~0.55 RTG Si-Ge
- ZTave~1.1 2x Improvement
- ZTave~1.6 3x Improvement

Voltage

- n-type
 - e^-
- p-type
 - h^+

Load

- **T_{hot}**
- **T_{cold}**

Thermal Power Plant

- Carnot Cycle
- Thermionic Generators
- Stirling Generator
- Automotiv e Engines
- Diesel

Temperature Ratio (T_{hot} / T_{cold})

- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1.0

Power Generation Efficiency

- **Thermoelectric Power Generators**
- **Thermionic Generators**
- **Stirling Generator**
- **Automotive Engines**
- **Diesel**
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa} \]

- \(S \) - Seebeck coefficient
- \(\sigma \) – electrical conductivity
- \(\kappa \) – thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT} - 1}{\sqrt{1 + ZT + T_{\text{cold}}/T_{\text{hot}}} \}

Phonon Scattering:
- Atom disorder
- Alloying
- Anharmonic vibrations

Fleurial/Chen – JPL/MIT
Fabrication of Nanostructure Solids

Goal: Preservation of the nanostructure during fabrication.

Nano-powder Synthesis

Thermal Densification
- Pressure Assisted
- Microwave
- Laser
- Plasma-SPS/P2C

Cold Densification
- Cold Spray
- Dynamic Compaction
- Plastic Deformation

Post Process

Thermodynamics
- Phase Transformation
- Precipitation
- Spinodal Decomposition

Inhibit Grain Growth
- Rapid Thermal Process
- Inclusions

Chen/MIT- κ Reduction

Si/Ge

Alloy Limit

κ Reduction

1 nm Thick GB

% Atoms in Grain Boundary

Grain Size (nm)

- Microstructure Dependent on Thermal Aging
- Composition Limited
Spinodal Decomposition

Desired Features
• ~50 nm grains
• High Temperature
• Wide Composition
• Large Δ Mass

Transparent Conducting Oxides
• Large Bandgap 2.4-3.8 ev
• N-type –Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ(S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8×10^5</td>
</tr>
<tr>
<td>In$_2$O$_3$</td>
<td>1×10^6</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>2.5×10^5</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3×10^5</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7×10^4</td>
</tr>
<tr>
<td>CdSnO$_2$</td>
<td>7.7×10^5</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7×10^6</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ZnO:Al
ZT=0.3 @ 1000 °C
Experimental

SnO₂
Purity: 99.9%
APS: 50 nm
SSA: 14.2 m²/g

TiO₂ Rutile
Purity: 99.99 %
APS: 20 nm,
SSA: > 30 m²/g

Dopants
CoO, MnO
Ta₂O₅, In₂O₃

TiO₂/SnO₂
50/50 mol %
75/25 mol %
25/75 mol %

Powder Mixing

Compaction
Die Press

Reactive Sintering
1250-1550 °C

Thermal Conductivity

- Laser Flash Method- Thermal Diffusivity
- Standard
- Specific Heat-Laser Flash
- Thermal Conductivity (K = αρCₚ)

Seebeck/Resistivity

ΔT 0-50 °C/Furnace RT-1000 °C
Sintering

50/50 TiO₂/SnO₂
1625 °C

75/25 TiO₂/SnO₂
1550 °C

Sintering-Inhibited
• Surface Diffusion <1100 °C
• Evaporation >1100 °C
SnO₂ → SnO + 1/2O₂(g)

Sintering Aids
• MnO, CoO, CuO, ZnO

CoO → Co⁹⁺_{Ti,Sn} + V_O⁹⁺

Ta₂O₅ & In₂O₃
Ineffective Sintering Aids

Ta₂O₅ → 2Ta⁹⁺_{Ti,Sn} + 2e⁻ + 1/2O₂

In₂O₃ → 2In⁹⁺_{Ti,Sn} + 2V_O⁻
75/25 TiO₂/SnO₂

1% Ta₂O₅
- **Sintered** - (Ti₀.₈Sn₀.₂)O₂
- **Reduced** - TiO₂, Rutile (Ti₀.₈Sn₀.₂)O₂

XRD-Phases
- **Sintered** - (Ti₀.₈Sn₀.₂)O₂
- **Annealed** - (Ti₀.₈Sn₀.₂)O₂
 - 1250 °C
- **Reduced** - TiO₂, Rutile (Ti₀.₈Sn₀.₂)O₂

GB Phase

1% In₂O₃
- **Annealed** - TiO₂, Rutile SnO₂, In₂O₃

XRD-Phases
- **Sintered** - TiO₂, Rutile SnO₂, In₂O₃
- **Annealed** - TiO₂, Rutile SnO₂, In₂O₃
 - 1250 °C

Phase Separation

1% CoO XRD
- **Sintered** - (Ti₀.₈Sn₀.₂)O₂ (Ti₀.₂Sn₀.₈)O₂
- **Annealed** - (Ti₀.₉Sn₀.₁)O₂ (Ti₀.₁Sn₀.₉)O₂
 - 1000 °C

1% MnO XRD
- **Sintered** - (Ti₀.₈Sn₀.₂)O₂ (Ti₀.₂Sn₀.₈)O₂
- **Annealed** - (Ti₀.₉Sn₀.₁)O₂ (Ti₀.₁Sn₀.₉)O₂
 - 1000 °C
50/50 TiO$_2$/SnO$_2$

XRD-Phases

Sintered – (Ti$_{0.8}$Sn$_{0.2}$)O$_2$
(Ti$_{0.2}$Sn$_{0.8}$)O$_2$

Annealed – (Ti$_{0.2}$Sn$_{0.8}$)O$_2$
1000 °C (Ti$_{0.9}$Sn$_{0.1}$)O$_2$

1% CoO

1% MnO

Microstructure Coarsening @ 1600 °C

Grain Boundary Phases Segregation
Electrical Conductivity

- **Ta_2O_5** – Increases σ – $E_a \sim 0.25$ ev
- $(Ti_x Sn_{1-x})O_{2-y}$ – Oxygen Deficiency Increases σ – $E_a \sim 0.06$ ev
- Co-doping-Ta_2O_5/CoO - Increases σ – $E_a \sim 0.5-0.7$ ev
- In_2O_3, MnO & CoO – Ineffective in Enhancing σ – $E_a \sim 1-4.2$ ev
Seebeck Coefficient

- **N-type**
- **Large Seebeck coefficients >-400 μV/K**
- **Large Seebeck coefficient – Low σ**
- $(Ti_{0.5}Sn_{0.5})O_{2-y}$ low Seebeck ~ 0
Thermal Conductivity

- Compositions exhibit low κ – 1.7 to 6.8 W/mK
- Observe no dependence on composition or post treatments
- Spinodal Decomposition – κ reduction?
- Best ZT ~ 0.05

Compositions

- 1% MnO-50 TiO$_2$
- 1% CoO-50 TiO$_2$
- 1% MnO-75 TiO$_2$
- 1% CoO-75 TiO$_2$
- 1% MnO-25 TiO$_2$
- 1% CoO- 25TiO$_2$
- 1%Ta$_2$O$_5$/0.5% CoO-25 TiO$_2$
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.