Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA Glenn, USA; Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Heat to Electric Power Generation

Space Power Generation

Waste Heat to Power
- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh (10^{12})
 Barrels of Oil – 170 giga-barrels (10^9)
- World-energy consumption ~120 tera-kWh (10^{12})
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO₂ emission
Nanotechnology

Figure of Merit

$$ZT = \frac{S^2 \sigma}{\kappa T}$$

- S - Seebeck coefficient
- σ – electrical conductivity
- κ – thermal conductivity

Efficiency

$$\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \frac{\sqrt{1 + ZT}}{\sqrt{1 + ZT} + \frac{T_{\text{cold}}}{T_{\text{hot}}}}$$

Phonon Scattering:
- Atom disorder
- Supperlattices
- Alloying
- Crystal Structures
- Anharmonic vibrations
- Nano-technology

Fleurial/Chen – JPL/MIT
Fabrication of Nanostructure Solids
Goal: Preservation of the nanostructure during fabrication.

Chen/MIT- κ Reduction

Nano-powder Synthesis

Thermal Densification
Pressure Assisted
Microwave
Laser
Plasma-SPS/P²C

Cold Densification
Cold Spray
Dynamic Compaction
Plastic Deformation

Inhibit Grain Growth
• Rapid Thermal Process
• Inclusions

Post Process

Thermodynamics
Phase Transformation
Precipitation
Spinodal Decomposition

1 nm Thick GB

% Atoms in Grain Boundary

Alloy Limit

Si/Ge

Grain Size (nm)

κ Reduction

• Microstructure
 Dependent on Thermal Aging
 • Composition Limited
Spinodal Decomposition

desired Features
- \(\approx 50\) nm grains
- High Temperature
- Wide Composition
- Large \(\Delta\) Mass

Transparent Conducting Oxides
- Large Bandgap 2.4-3.8 ev
- N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>(\sigma) (S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>(8 \times 10^5)</td>
</tr>
<tr>
<td>(\text{In}_2\text{O}_3)</td>
<td>(1 \times 10^6)</td>
</tr>
<tr>
<td>(\text{SnO}_2)</td>
<td>(2.5 \times 10^5)</td>
</tr>
<tr>
<td>(\text{ZnO})</td>
<td>(8.3 \times 10^5)</td>
</tr>
<tr>
<td>(\text{ZnO:Al})</td>
<td>(7.7 \times 10^4)</td>
</tr>
<tr>
<td>(\text{CdSnO}_2)</td>
<td>(7.7 \times 10^5)</td>
</tr>
<tr>
<td>(\text{CdO:In})</td>
<td>(1.7 \times 10^6)</td>
</tr>
<tr>
<td>(\text{TiO}_2)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\(\text{ZnO:Al}\) \(ZT=0.3\) @ 1000 °C

Fig. 10. TEM image of \((\text{Ti}_0.5/\text{Sn}_0.5)\text{O}_2\) ceramics annealed for 48 h.
SnO₂
Purity: 99.9%
APS: 50 nm
SSA: 14.2 m²/g

TiO₂ Rutile
Purity: 99.99 %
APS: 20 nm,
SSA: > 30 m²/g

Dopants
CoO, MnO
Ta₂O₅, In₂O₃

TiO₂/SnO₂
50/50 mol %
75/25 mol %
25/75 mol %

Powder Mixing

Compaction
Die Press

Reactive Sintering
1250-1550 °C

Thermal Conductivity

• Laser Flash Method- Thermal Diffusivity
• Standard
• Specific Heat-Laser Flash
• Thermal Conductivity (K = αρ Cv)

Seebeck/Resistivity

ΔT 0-50 °C/Furnace RT-1000 °C
Sintering

Sintering-Controlled By SnO₂

Sintering-Inhibited
- Surface Diffusion <1100 °C
- Evaporation >1100 °C

SnO₂ → SnO + ½O₂(g)

Sintering Aids
- MnO, CoO, CuO, ZnO

CoO → Co"Ti,Sn + V'O

50/50 TiO₂/SnO₂

1625 °C

75/25 TiO₂/SnO₂

1550 °C

Ta₂O₅ & In₂O₃

Ineffective Sintering Aids

Ta₂O₅ → 2Ta"Ti,Sn + 2e' + ½O₂

In₂O₃ → 2In'Ti,Sn + 2V'O
75/25 TiO₂/SnO₂

Undoped

XRD-Phases
- Sintered – (Ti_{0.8}Sn_{0.2})O₂
- Reduced – TiO₂, Rutile
- (Ti_{0.8}Sn_{0.2})O₂

1% Ta₂O₅

XRD-Phases
- Sintered – (Ti_{0.8}Sn_{0.2})O₂
- Reduced – TiO₂, Rutile
- (Ti_{0.8}Sn_{0.2})O₂

1% In₂O₃

XRD-Phases
- Sintered – TiO₂, Rutile
- SnO₂, In₂O₃
- Annealed – TiO₂, Rutile
- SnO₂, In₂O₃

1% Ta₂O₅ GB Phase

1% CoO XRD
- Sintered – (Ti_{0.8}Sn_{0.2})O₂
- (Ti_{0.2}Sn_{0.8})O₂
- Annealed – (Ti_{0.9}Sn_{0.1})O₂
- (Ti_{0.1}Sn_{0.9})O₂

1000 °C

Phase Separation

1% MnO XRD
- Sintered – (Ti_{0.8}Sn_{0.2})O₂
- (Ti_{0.2}Sn_{0.8})O₂
- Annealed – (Ti_{0.9}Sn_{0.1})O₂
- (Ti_{0.1}Sn_{0.9})O₂
50/50 TiO$_2$/SnO$_2$

1% CoO

1% MnO

XRD-Phases
Sintered – $(\text{Ti}_{0.8}\text{Sn}_{0.2})\text{O}_2$
$(\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2$
$(\text{TiO}_2$
Annealed – $(\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2$
$1000 \degree \text{C} (\text{Ti}_{0.9}\text{Sn}_{0.1})\text{O}_2$

XRD-Phases
Sintered – $(\text{Ti}_{0.8}\text{Sn}_{0.2})\text{O}_2$
$(\text{Ti}_{0.1}\text{Sn}_{0.9})\text{O}_2$
Annealed – $(\text{Ti}_{0.2}\text{Sn}_{0.8})\text{O}_2$
$1000 \degree \text{C} (\text{Ti}_{0.9}\text{Sn}_{0.1})\text{O}_2$

Microstructure Coarsening @ 1600 \degree \text{C}

Grain Boundary Phases Segregation
Electrical Conductivity

- Ta_2O_5 – Increases σ – $E_a \sim 0.25$ ev
- $(\text{Ti}_x\text{Sn}_{1-x})\text{O}_{2-y}$ – Oxygen Deficiency Increases σ – $E_a \sim 0.06$ ev
- Co-doping-Ta_2O_5/CoO - Increases σ – $E_a \sim 0.5-0.7$ ev
- In_2O_3, MnO & CoO – Ineffective in Enhancing σ – $E_a \sim 1-4.2$ ev
• N-type
• Large Seebeck coefficients >-400 μV/K
• Large Seebeck coefficient – Low σ
• (Ti_{0.5}Sn_{0.5})O_{2-y} low Seebeck ~ 0
Thermal Conductivity

Compositions

- 1% MnO-50 TiO₂
- 1% CoO-50 TiO₂
- 1% MnO-75 TiO₂
- 1% CoO-75 TiO₂
- 1% MnO-25 TiO₂
- 1% CoO-25 TiO₂
- 1% Ta₂O₅/0.5% CoO-25 TiO₂

- Compositions exhibit low κ – 1.7 to 6.8 W/mK
- Observe no dependence on composition or post treatments
- Spinodal Decomposition – κ reduction?
- Best ZT ~ 0.05
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.