Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys*, NASA Glenn, USA; Ali Sayir, Alp Sehirlioglu, Case Western Reserve University, USA

Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO$_2$/SnO$_2$ system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO$_2$. The phase separated microstructures are stable up to 1400 °C. Semiconducting TiO$_2$/SnO$_2$ powders were synthesized by solid state reaction between TiO$_2$ and SnO$_2$. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 °C. X-ray diffraction reveal phase separation of (Ti$_x$Sn$_{1-x}$)O$_2$ type phases. The TiO$_2$/SnO$_2$ nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 °C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.
Thermoelectric Properties of Self Assembled TiO$_2$/SnO$_2$ Nanocomposites

Fred Dynys, NASA-Glenn, USA
Ali Sayir, CWRU, USA
Alp Sehirlioglu, CWRU, USA

Program Support: NASA Radioisotope Power Systems
Heat to Electric Power Generation

Objective: High Conversion Efficiency
- Reduces Mass, Volume & Cost

Space Power Generation

Waste Heat to Power
- Waste Heat is one of our most under utilized energy resources
- U.S.-energy consumption ~29 tera-kWh \((10^{12})\)
 - Barrels of Oil – 170 giga-barrels \((10^9)\)
- World-energy consumption ~120 tera-kWh \((10^{12})\)
- 20-65 percent is lost in the form of heat
- Maximizes efficiency
- Reduces CO\(_2\) emission
Nanotechnology

Figure of Merit

\[ZT = \frac{S^2 \sigma}{\kappa T} \]

- \(S \): Seebeck coefficient
- \(\sigma \): Electrical conductivity
- \(\kappa \): Thermal conductivity

Efficiency

\[\eta_{\text{max}} = \frac{\Delta T}{T_{\text{hot}}} \left(\sqrt{1 + ZT} - 1 \right) \]

- \(\Delta T \): Temperature difference
- \(T_{\text{hot}} \): Hot temperature
- \(T_{\text{cold}} \): Cold temperature

Phonon Scattering:
- Atom disorder
- Supperlattices
- Alloying
- Crystal structures
- Anharmonic vibrations
- Nano-technology

Fleurial/Chen – JPL/MIT

Graphs showing the evolution of figure of merit (ZT) from 1940 to 2020 for various materials and alloys.
Fabrication of Nanostructure Solids
Goal: Preservation of the nanostructure during fabrication.

Nano-powder Synthesis

Thermal Densification
- Pressure Assisted
- Microwave
- Laser
- Plasma-SPS/P²C

Cold Densification
- Cold Spray
- Dynamic Compaction
- Plastic Deformation

Inhibit Grain Growth
- Rapid Thermal Process
- Inclusions

Post Process

Thermodynamics
- Phase Transformation
- Precipitation
- Spinodal Decomposition

Microstructure
- Dependent on Thermal Aging
- Composition Limited

Si/Ge

Alloy Limit

1 nm Thick GB

% Atoms in Grain Boundary vs. Grain Size (nm)
Spinodal Decomposition

Desired Features
- ~50 nm grains
- High Temperature
- Wide Composition
- Large Δ Mass

Transparent Conducting Oxides
- Large Bandgap 2.4-3.8 ev
- N-type – Degenerate Semiconductor

Electrical Conductivity

<table>
<thead>
<tr>
<th>TCO</th>
<th>σ(S/m) @ RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITO</td>
<td>8x10⁵</td>
</tr>
<tr>
<td>In₂O₃</td>
<td>1x10⁶</td>
</tr>
<tr>
<td>SnO₂</td>
<td>2.5x10⁵</td>
</tr>
<tr>
<td>ZnO</td>
<td>8.3x10⁵</td>
</tr>
<tr>
<td>ZnO:Al</td>
<td>7.7x10⁴</td>
</tr>
<tr>
<td>CdSnO₂</td>
<td>7.7x10⁴</td>
</tr>
<tr>
<td>CdO:In</td>
<td>1.7x10⁶</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.01</td>
</tr>
</tbody>
</table>

ZnO:Al
ZT=0.3 @ 1000 °C

Fig. 10. TEM image of (Ti₅/₃Sn₄/₃)O₂ ceramics annealed for 48 h.
SnO₂
Purity: 99.9%
APS: 50 nm
SSA: 14.2 m²/g

TiO₂ Rutile
Purity: 99.99%
APS: 20 nm,
SSA: > 30 m²/g

Dopants
CoO, MnO
Ta₂O₅, In₂O₃

Experimental

TiO₂/SnO₂
50/50 mol %
75/25 mol %
25/75 mol %

Powder Mixing
Compaction Die Press
Reactive Sintering
1250-1550 °C

Thermal Conductivity
- Laser Flash Method - Thermal Diffusivity
- Standard
- Specific Heat-Laser Flash
- Thermal Conductivity (K = αρCₚ)

Seebeck/Resistivity
ZEM-3
6-22 mm
4-8 mm

ΔT 0-50 °C/Furnace RT-1000 °C
Sintering

Sintering-Controlled By SnO₂

Sintering-Inhibited
- Surface Diffusion <1100 °C
- Evaporation >1100 °C
SnO₂ → SnO + ½O₂(g)

Sintering Aids
- MnO, CoO, CuO, ZnO
CoO → Co_{Ti,Sn} + V_O

50/50 TiO₂/SnO₂
1625 °C

75/25 TiO₂/SnO₂
1550 °C

Ta₂O₅ & In₂O₃
Ineffective Sintering Aids
Ta₂O₅ → 2Ta_{Ti,Sn}^* + 2e^- + ½O₂
In₂O₃ → 2In_{Ti,Sn}^* + 2V_O^*
75/25 TiO₂/SnO₂

Undoped

XRD-Phases
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- Reduced – TiO₂, Rutile
- (Ti₀.₈Sn₀.₂)O₂

1% Ta₂O₅

XRD-Phases
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- Annealed – (Ti₀.₈Sn₀.₂)O₂
- 1250 °C
- Reduced – TiO₂, Rutile
- (Ti₀.₈Sn₀.₂)O₂

1% In₂O₃

XRD-Phases
- Sintered – TiO₂, Rutile
- SnO₂, In₂O₃
- Annealed – TiO₂, Rutile
- 1250 °C
- SnO₂, In₂O₃

Phase Separation

1% CoO XRD
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- (Ti₀.₂Sn₀.₈)O₂
- Annealed – (Ti₀.₉Sn₀.₁)O₂
- 1000 °C
- (Ti₀.₁Sn₀.₉)O₂

1% MnO XRD
- Sintered – (Ti₀.₈Sn₀.₂)O₂
- (Ti₀.₂Sn₀.₈)O₂
- Annealed – (Ti₀.₉Sn₀.₁)O₂
- 1000 °C
- (Ti₀.₁Sn₀.₉)O₂
50/50 TiO₂/SnO₂

1% CoO

1% MnO

XRD-Phases
Sintered – (Ti_{0.8}Sn_{0.2})O₂
(Ti_{0.2}Sn_{0.8})O₂
TiO₂
Annealed – (Ti_{0.2}Sn_{0.8})O₂
1000 °C (Ti_{0.9}Sn_{0.1})O₂

XRD-Phases
Sintered – (Ti_{0.8}Sn_{0.2})O₂
(Ti_{0.1}Sn_{0.9})O₂
Annealed – (Ti_{0.2}Sn_{0.8})O₂
1000 °C (Ti_{0.9}Sn_{0.1})O₂

Microstructure
Coarsening @ 1600 °C

Grain Boundary Phases
Segregation
Electrical Conductivity

- Ta_2O_5 – Increases $\sigma - E_a \approx 0.25$ ev
- $(\text{Ti}_x\text{Sn}_{1-x})\text{O}_{2-y}$ – Oxygen Deficiency Increases $\sigma - E_a \approx 0.06$ ev
- Co-doping-Ta_2O_5/CoO - Increases $\sigma - E_a \approx 0.5$-0.7 ev
- In_2O_3, MnO & CoO – Ineffective in Enhancing $\sigma - E_a \approx 1$-4.2 ev
Seebeck Coefficient

- N-type
- Large Seebeck coefficients >-400 μV/K
- Large Seebeck coefficient – Low σ
- \((\text{Ti}_{0.5}\text{Sn}_{0.5})\text{O}_{2-y}\) low Seebeck ~ 0

75/25 TiO₂/SnO₂

- TiO₂
- Undoped
- 1% Ta₂O₅
- 1% In₂O₃
- 1% CoO
- 1% MnO

50/50 & 25/75 TiO₂/SnO₂

- 1% Ta₂O₅/0.5% CoO
- \((\text{Ti}_{0.5}\text{Sn}_{0.5})\text{O}_{2-y}\)
Compositions

- 1% MnO-50 TiO₂
- 1% CoO-50 TiO₂
- 1% MnO-75 TiO₂
- 1% CoO-75 TiO₂
- 1% MnO-25 TiO₂
- 1% CoO-25 TiO₂
- 1% Ta₂O₅/0.5% CoO-25 TiO₂

- Compositions exhibit low κ – 1.7 to 6.8 W/mK
- Observe no dependence on composition or post treatments
- Spinodal Decomposition – κ reduction?
- Best ZT \sim 0.05
In Summary

• TiO$_2$/SnO$_2$ compositions exhibit low thermal conductivity. Reduction in thermal conductance by spinodal microstructure has not been isolated.

• Improvements in electrical conductivity is needed. Grain boundary phases could be detrimental. Ta$_2$O$_5$ or oxygen deficiency enhances electrical conductivity.

• Sintering aids are required to densify equal-molar and tin oxide rich compositions. MnO and CoO promoted phase separation.