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Abstract 

 
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits 
of these solid-state devices have become more apparent. However, much is still unknown about the 
characteristic behavior of these materials when used in actuator applications. Recently we have shown that 
the maximum temperature reached during thermal cycling under isobaric conditions could significantly 
affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation 
strain available for actuation and thus work output. This investigation extends that original work to 
ascertain whether further increases in the upper-cycle temperature would produce additional improvement 
in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum 
cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at 
various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 
350 oC. The data indicated that the amount of applied stress influenced the transformation strain available 
in the system, as would be expected. However, the maximum temperature reached during the thermal 
excursion also plays a role in determining the transformation strain, with the maximum transformation 
strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the 
differences in transformation strain were related to differences in martensite texture within the 
microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is 
important to optimizing the operation of SMA-based actuators and could lead to new methods for 
processing and training shape memory alloys for optimal performance. 
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Purpose of this Work

Determine if any differences in macroscopic strain
would result if the highest temperature reached during
a thermal cycle of the actuator is varied.

Use constant-stress, thermal-cycling experiment
• Change the highest temperature reached during the thermal cycle
(Upper-Cycle Temperature)
• Assess effects of temperature change on observed response:

 Absolute strain levels
 Transformation strain
 Open-Loop strain
 Transformation temperatures

Use select in-situ, neutron diffraction experiments
• Understand underlying mechanisms associated with any
• observed differences
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Parameters Assessed from
Constant-Stress, Thermal-Cycle Experiment

(“Load-Bias” Experiment)

• Transformation strain – directly
• utilized to determine work capability

• Open-Loop strain – used to
• determine dimensional stability

• Transformation temperatures –
• used to assess effect of stress
• on transformation

Upper-Cycle
Temperature

Constant Stress
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Upper-Cycle Temperature Influences
“Load-bias” Response

 Alters the absolute end levels, especially at the higher stresses

 Has an effect on open-loop strain at the higher stresses
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Stress and Upper-Cycle Temperature
Influence Stroke and Dimensional Stability
Transformation Strain (%)
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Stress and Upper-Cycle Temperature
Affect Transformation Temperatures
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What is causing the observed behavior?

Stress Upper-Cycle
Temperature

 Absolute strain level
 Transformation strain
 Open-Loop strain
 Transformation temperatures

Affected Properties

 Microstructure Changes
 Throughout Bulk (Not Just Surface)
 In-situ

 Neutron Diffraction

Commonly
Understood

Not Commonly
Understood



9

National Aeronautics and Space Administration

www.nasa.gov

In-situ Neutron Diffraction

SMARTS at Los Alamos National Laboratory
(Spectrometer for Materials Research at Temperature and Stress)

Performed select constant-stress, thermal-cycling experiments:
• Stress Levels: 100, 200 and 300 MPa
• Upper-cycle Temperatures: 165, 230 and 320 oC
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Stress and Upper-Cycle Temperature
Affect Martensite Texture

(Determined by looking at changes in 100M/011M peak ratios)
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 Both affect texture “evolution” of martensite
 High stresses lead to increased dimensional instability

Stress and Upper-Cycle Temperature
Play Separate Roles in Influencing Properties
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Changes Occur within “Austenite” State
 Texture evolution @ higher
 temperature

 Retained martensite
 present @ higher stress
 levels

 Internal strain changing with
 temperature

Evidence of retained
martensite @ 300 MPa

100 MPa

300 MPa

200 MPa
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Summary

• Upper-Cycle Temperature and Applied Stress affect
• observed macroscopic strain through changes in
• texture (both of the martensite and austenite phases)

• Stress and Temperature also influence other observed
• properties including the transformation temperatures
• of the material

• In-situ Neutron Diffraction plays a key role in helping
• us understand the complex microstructural
• developments that lead to observed response
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Questions
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Questions
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Constant-Stress, Thermal-Cycle Experiment
(“Load-bias” Experiment)

• Load applied in martensite
• state (convenience/
• probable method for real
• actuators)

• Any # of Cycles @ each
• stress level (typically 2 for
• exploratory work)

• Multiple stress levels run
• on same specimen
• (so-called “series” test)


