Human Adaptation to Space: Space Physiology and Countermeasures

Presented by: Jennifer Fogarty, PhD – NASA

May 2008
Acknowledgements

The following presentation is the product of on-going work by The NASA, Johnson Space Center, Space Life Sciences Directorate (SLSD)

Laboratories, researchers, clinicians, and analysts from each division, Habitability and Environmental Factors; Human Adaptation and Countermeasures; and Space Medicine, within SLSD have contributed to the work presented here.
Human Spaceflight Experience

The chart shows the number of individual exposures by flight duration. It indicates that the majority of exposures occurred during flights lasting 1-2 weeks.
Astronauts experience a spectrum of adaptations in flight and postflight.

- Balance disorders
- Cardiovascular deconditioning
- Decreased immune function
- Muscle atrophy
- Bone loss

- Neurovestibular
- Cardiovascular
 - Bone
 - Muscle
- Immunology
 - Nutrition
- Behavior
Space Adaptation Syndrome (SAS)

- approximately 70% of all astronauts traveling into space experience SAS symptoms, which range from nausea and light headedness to vomiting. The exact cause of SAS is unknown, but it is believed that it is caused by conflicting sensory inputs from the vestibular organ (inner ear) and the eyes. SAS symptoms normally last only for a day or two and can be treated by medication.
Space Adaptation Syndrome (SAS)

- Space Motion Sickness (SMS)
- Headache
- Back Pain
- Insomnia
- Nasal Congestion
- Constipation
- Nosebleed
- Urinary Retention
- Urinary Incontinence
ISS Expeditions 1-16

- 20 Astronauts on ISS
 - 17 males
 - 3 females
- Average age 47.2 years young
- Average length of mission 174.2 days
 - Longest mission 215 days
 - Shortest mission 133 days
Countermeasure

- an action, process, device, or system that can prevent, or mitigate (negate or offset) the effects of threats to a human; a threat is a potential or actual adverse event that may be malicious or incidental, and that can compromise the health and/or performance of an individual and the integrity of mission
Exercise Countermeasures System Elements

Resistive Exercise
- SchRED
 - Axial Bone loading, Muscle Strength, & Joint protection

Treadmill
- TVIS
 - Bone impact loading, Sensorimotor & Cardio

Cycle Ergometry
- CEVIS
 - Cardio & muscle

This integrated system supports crew capability for normal and contingency ops. There is limited redundancy and crossover between the elements of the CMS system.
Exercise Device Availability

ISS Exercise Hardware Availability Timeline

- **CEVIS Assembly**
 - Restricted to arm ergometry
 - Failing control panel
 - CCC installed
 - DC power converter failure
 - Failed control panel; CCC installed

- **I-RED Assembly**
 - SchRED replaces I-RED
 - Incorrect thimble on new cord

- **TVIS Assembly**
 - 7th fwd stbd roller deteriorated

- **Timeline**
 - 10/00
 - 03/01
 - 08/01
 - 12/01
 - 06/02
 - 11/02
 - 04/03
 - 10/03
 - 04/04
 - 10/04
 - 04/05
 - 09/05
 - 03/06
 - 09/06
 - 04/07
 - 10/07
Biomedical Data

Data Collected via Medical Requirements

Assessments of:

- Bone
- Aerobic Fitness
- Functional Fitness
Decreased Bone Mineral Density

BMD % Change from Preflight Expeditions 1-16 (n=20)

-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0

Lumbar Spine
Femoral Neck
Trochanter
Whole Body
Heel
Pelvis
Decreased Bone Mineral Density

Pre and Post Bone Mineral Density- I
Expeditions 1-16 (n=20)

BMD (g/cm²)

Pre and Post Bone Mineral Density- II
Expeditions 1-16 (n=20)

BMD (g/cm²)
Bone Mineral Density Recovery

Pelvis
- Loss$_0$=7.7%
- Recovery Half-life=97 d

Femoral Neck
- Loss$_0$=6.8%
- Recovery Half-life=211 d

Trochanter
- Loss$_0$=7.8%
- Recovery Half-life=255 d
Estimated In-flight and Post-flight Aerobic Capacity

Percent Change in Estimated VO2 Index from Pre-Flight Expeditions 1-16 (n=20)
Recovery of Functional Fitness

Postflight Functional Fitness Expeditions 1-16 (n=20)

% change from preflight

Push Ups Crunches Pull Ups Sit&Reach Bench Press Leg Press
Biomedical Results of ISS Expeditions 1-16

Summary Slide

Purpose: Highlight the biomedical data captured during International Space Station expeditions 1 - 16 via the medical requirements testing

Content: Graphic assessments of physiological and performance. The physiological parameters assessed include skeletal and cardiovascular. Performance parameters assessed include aerobic capacity, strength, flexibility, and endurance measurements.