Ikhana: A NASA Unmanned Aerial System Supporting Long-Duration Earth Science Missions

Brent Cobleigh
Project Manager
NASA Dryden Flight Research Center

32nd International Symposium on Remote Sensing of Environment
Project Goals

IKHANA

- Ikhana = Choctaw Native American word for “intelligent, conscious, or aware”

- Airborne platform to conduct Earth observation and atmospheric sampling science missions both nationally and internationally
 - Example: 2007 Western States Fire Mission with USFS

- Develop and demonstrate technologies that improve the capability of UAVs to conduct science data collection missions
 - Example: Precision Trajectory capability enabling high resolution synthetic aperture radar missions

- Develop technologies that improve manned and unmanned aircraft systems
 - Example: 2007/2008 Demonstration of a fiber-optic measurement system for determining real-time wing deflection in a flexible structure

- Support important national UAV development activities
 - Example: Demonstration of a “sense and avoid” system to prevent mid-air collision
Aircraft Selection Criteria

IKHANA

- **Endurance > 24 hours**
 - Allows measurements of day/night atmospheric variations
 - Access to remote areas
- **Altitude >40,000 ft**
 - Currently useful for flight above majority of air traffic in national airspace
 - Required for in-situ measurement of atmospheric conditions
- **Payload Capability**
 - More than 2000 lbs of science instruments
- **Reliability**
 - Triple redundant flight control systems, dual redundant power & networks
 - Highly reliable engine
 - More than 200,000 flight hours
 - Proven “lost link” capability
Payload Areas

- Wing-mounted pods
- Avionics Bay
 - Payload Tray
 - Chin compartment
Payload Areas

- Wing-mounted pods
- Avionics Bay
 - Payload Tray
 - Chin compartment

Universal Payload Tray
Ikhana Research Systems

Experimenter Network

- Ethernet network connecting systems in the avionics bay and remote pods
- Allows payloads to:
 - Communicate
 - Send data to recorder
 - Send data to satellite downlink
 - Receive common time
 - Receive aircraft state data (planned)
Ikhana Research Systems

Network Data Recorder

- 64 GB storage
- Networked multi-Gigabit input/output
- Four 100Base-T Ethernet switch ports
- 10 Mbps PCM serial data streams
- 16 analog inputs

NTP Time Server

- Provides common time to recorder and experimenter network
GPS Antenna connections

- 8 powered L1/L2 antenna connections
Airborne Research Test System (ARTS)

Payload

Data
Commands

Aircraft Flight Controls

Aircraft Commands
Aircraft Data

Ground Control Station
Airborne Research Test System (ARTS)

- Payloads
- Aircraft
- Flight Controls
- Ground Control Station
- Hosted Experiments

- Data
- Commands

- Ethernet, RS-422, 1553, ARINC-429, digital

Instrumentation and Control Systems (IKHANA)
Airborne Research Test System (ARTS)

- Receives data from aircraft and payload sensors
- Hosts research flight controls
 - Autonomous mission management
 - Collision Avoidance
 - Precision trajectory
- Hosts payload processing algorithms
- Processes data for downlink
Ground Systems

IKHANA

- Mobile Ground Control Station
 - Dual pilot control station
 - 6 Engineering/Science workstations
 - Range safety workstation
 - Intercom system throughout
 - Overhead mission displays
 - Telephones
 - Printer
 - Remote video from aircraft start-up/shut-down site
 - Downlink video and data recording

- Mobile 2.4m Ku SatCom Antenna
 - Dual redundant receiver/transmitters
Operations Concept

IKHANA

- Currently UAS operations in the U.S. require certificate of authorization (COA) outside segregated airspace
- Chase aircraft required below 18k in the U.S. National Airspace (NAS)
- Air traffic control (ATC) used for collision avoidance above 18,000 ft
- UAS systems not qualified for Reduced Vertical Separation Minima (RVSM)
- Air traffic control prefers UAS flight above majority of air traffic
- Missions in the NAS will follow specific routes, separate from commercial airways
- Slow airspeed difficult to integrate with commercial air traffic
- Vertical profiling discouraged due to difficulty in routing traffic
Concluding Remarks

IKHANA

• Ikhana will begin operations this summer
• Focused on simple integration of sensor payloads
• Advanced capability to network sensors, communication, and flight control
• UAS operations will continue to be challenging
 – Airspace access
 – Contingency planning
 – Human machine interface
 – Altitude vs endurance vs payload trade-off