Why cFE/CFS

• Requirements
 – The Requirements for Command and Data Handling (C&DH) Flight Software are very similar from Flight Project to Fight Project
 – The Requirements for Guidance Navigation and Control (GNC) Flight Software can also be quite similar from Flight Project to Fight Project

• So, let’s not “re-invent the wheel” each project
 – cFE/CFS responds to this by allowing FSW developers and testers to concentrate on the uniqueness of a project
cFE Heritage

SAMPEX (launched 8/92)

SWAS (launched 12/98)

XTE (launched 12/95)

TRMM (launched 11/97)

IceSat GLAS (01/03)

MAP (launched 06/01)

TRACE (launched 3/98)

WIRE (launched 2/99)

SMEX-Lite

Triana (waiting for launch)

Swift BAT (12/04)

JWST ISIM (2011)

Core FSW Executive

Future Spacecraft and Instruments

ST-5 (5/06)

SDO (2007)

LRO (2009)

ST-5 (launched 12/97)

SWAS (launched 12/98)

TRACE (launched 3/98)

WIRE (launched 2/99)

SMEX-Lite

Triana (waiting for launch)

Swift BAT (12/04)

JWST ISIM (2011)

Core FSW Executive

Future Spacecraft and Instruments

ST-5 (5/06)

SDO (2007)

LRO (2009)
Past vs. Future Comparison

Past
- FSW lead for Mission X would obtain FSW and artifacts from heritage mission that they knew
 - Branch had several different “heritage architectures” to choose from
- Changes were made to heritage FSW artifacts for new mission
 - New flight hardware or Operating System required changes throughout FSW
 - FSW changes were made at the discretion of developer
 - FSW test procedure changes were made at the discretion of the tester
 - Extensive documentation updates were made
- Integrating new FSW components required manual coordination
 - Manually defined flight tables

Future (with CFS)
- FSW lead for Mission X will obtain FSW and artifacts from the CFS Re-use Library
 - One CFS “product line” architecture to choose from
 - All artifacts are contained in the re-use library
- CFS Changes required for a mission are **controlled and localized**
 - New hardware and Operating System changes are localized to Operating System Abstraction Layer (OSAL) – other FSW not affected.
 - FSW Requirements, source code and test procedures are **controlled** by Re-use Library CCB
- Integrating new FSW components requires *little* manual effort
 - Run-time registration
Layered Architecture

- Each layer “hides” its implementation and technology details.
- Internals of a layer can be changed -- without affecting other layers’ internals and components.
- Small-footprint, light-weight architecture and implementation minimizes overhead.
- Enables technology infusion and evolution.
- Doesn’t dictate a product or vendor.
- Provides Middleware, OS and HW platform-independence.
Past vs. Future Comparison (con’t)

Past

- Cost advantages of using heritage products was not realized
- Little to no collaboration within GSFC, NASA or outside entities was feasible
- On-orbit FSW maintenance team needed to understand each heritage architecture

Future (with CFS)

- Effort focused on new and unique FSW applications
- Standard FSW interfaces (APIs) facilitates collaboration across NASA
- On-orbit FSW maintenance team needs to understand one product line
What is the CFS?

The Core Flight Software System is a mission-independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE).
CFS Goals

- Reduce time to deploy high quality flight software
- Reduce project schedule and cost uncertainty
- Directly facilitate formalized software reuse
- Enable collaboration across organizations
- Simplify sustaining engineering (AKA. FSW maintenance)
- Scale from small instruments to System of Systems
- Platform for advanced concepts and prototyping
- Common standards and tools across the branch and NASA wide

Build on the many successful FSW experiences and ideas of FSW staff who worked previous Goddard missions
Supporting the Goals

- Layered Architecture
- Standard Middleware/Bus
- Standard Application Programmer Interface for a set of core services
- Plug and Play
- Reusable Components
- Configuration Management
- Requirements Tracking
- Development Standards
- Development Tools

All of the above to be managed in a FSW Re-use Library

\{
 Core Flight Executive
 \}

\{
 Component Library
 \}

\{
 Integrated Development Environment (IDE)
 \}