Thermostabilized Shelf Life Study

M.H. Perchonok, P.M. Catauro
NASA JSC, 2101 NASA Parkway, Houston, TX 77050

ABSTRACT

The primary goal of the Advanced Food Technology Project is to develop shelf-stable foods for use during long-duration space missions. The project is investigating a range of potential shelf-stable foods, which might include dehydrated meats, dehydrated vegetables, and dehydrated fruits. Foods are evaluated for baseline within 3 weeks of production. Evaluations are every four months for the first 2 years and every 6 months for the 3rd year. Sensory testing includes a difference from control testing and overall acceptability testing. Textural analysis includes the texture, color, moisture, and water activity determination.

MATERIALS AND METHODS

Products stored at three temperatures, 40°F, 72°F, and 95°F for an accelerated shelf life test. Products are evaluated for baselines within 3 weeks of production. Evaluations are every four months for the first 2 years and every 6 months for the 3rd year. Sensory testing includes a difference from control testing and overall acceptability testing. Textural analysis includes the texture, color, moisture, and water activity determination.

RESULTS AND DISCUSSION

Entrées Pork Chops, Tuna Noodle Casserole

Grilled Pork Chops
- Vitamin B1 levels showed losses at higher storage temperatures
- Droniness of the product was cited as a reason for product failure
- Shelf life projected to be 87 months at 72°F

Tuna Noodle Casserole
- Product failure was attributed to declining scores for hardening of noodles and darkening of color during the 36 month study
- Vitamin A, B1 and B12 demonstrated a linear decline with temperature
- Shelf life projected to be 48 months at 72°F

Sweets (Bread Pudding)

High sugar items tend to have longer shelf lives
- Overall flavor, level of sweetness, and texture, and overall acceptability showed a decline due to the Maillard Browning reactions. The three most prevalent ingredients; milk, sugar, and egg, would provide sufficient amounts of free amino groups and reducing sugar to allow for condensation reactions to occur
- Shelf life projected to be 48 months at 72°F

Vegetables (Carrot Coins, Sugar Snap Peas)

Gradual decreases in all related color values for all temperatures over the storage period, yellow in particular.
- Vitamin B1 levels showed losses at higher storage temperatures
- Overall acceptability scores for carrot coins declined gradually over the storage period with the comments as “too mushy”
- The 40°F and 72°F samples were still acceptable after three years.
- The sugar snap peas were unacceptable at all temperatures at 20 months due to bitter aftertaste and darker color
- Shelf life projected to be 20 months at 72°F

Cheese and Vegetable (Palak Paneer)

Overall acceptability and specifically aroma scores decreased over time likely due to oxidation of the spices and lipids (cheese).
- Color changes indicated a loss of green color in the spinach and a darkening of the cheese over time.
- Shelf life for both products projected to be 20 months at 72°F

Shelf Life for both products projected to be 20 months at 72°F

Starch (Homestyle Potatoes)

Flavor decreased over time due to acidic aftertaste, off aroma, and overall decrease in flavor.
- There was a significant decline in folate content and pantothenic acid
- Shelf life projected to be 48 months at 72°F

CONCLUSIONS

- Shelf life is determined by safety, acceptability, and nutritional content
- Safety is not an issue due to the processing
- Acceptability is dependent on formulation and processing conditions
- Nutrition is lost over time
- Sugar can protect the food from degradation
- Formulations that contain whole eggs at a significant level do not provide acceptable products using the current thermostabilization process
- Food products tend to broken over time. The Maillard Browning reaction affects color and flavor
- The current thermostabilization process will not provide a 5 year shelf life for all formulations

EXTENDS

- Complete analysis of 16 month data for the last two products – Roasted Vegetables and Thyme Brown Rice
- Based on the projected shelf life of these 13 items, shelf life of all of NASA’s thermostabilized food products will be predicted. Report will be completed in April 2009.

REFERENCES