
47
th

 AIAA Aerospace Science Meeting                                                                                  AIAA 2009-0173 

 

   

Hypersonic Viscous Flow over Large Roughness Elements 

 
 

 

Chau-Lyan Chang
*
 and Meelan M. Choudhari

* 

 

NASA Langley Research Center, Hampton, VA23681 

Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to 

aerothermodynamic considerations related to laminar-turbulent transition.  Current prediction capability is 

greatly hampered by the limited knowledge base for such flows.  To help fill that gap, numerical 

computations are used to investigate the intricate flow physics involved.   An unstructured mesh, 

compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) 

method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in 

wind tunnel experiments at NASA Langley Research Center.  It was found through 2D parametric study that 

at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding 

downstream, is likely to weaken at supersonic free-stream conditions.  On the other hand, convective 

instability may be the dominant mechanism for supersonic boundary layers.  Three-dimensional calculations 

for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm 

that no self-sustained vortex generation is present. 

I. Introduction 

iscous flow over discrete and/or distributed surface roughness in hypersonic boundary layers poses a 

computationally challenging problem, which has significant practical implications in the context of 

aerothermodynamic predictions for almost all hypersonic vehicles.  While it is known that surface roughness causes 

premature laminar-turbulent transition, a robust transition prediction capability for such flows is currently lacking.  

For this reason, empirical correlations based on wind tunnel tests and sparse flight data are generally used to 

estimate transition in the presence of surface roughness.  The need for the development of physics-based transition 

prediction methods was highlighted by the protruding gap filler during shuttle mission STS-114, which led to a 

space walk by Astronaut Robinson for its removal due to the associated uncertainty in boundary-layer transition and 

the related impact on the aerothermodynamics of the vehicle. To help develop physics based prediction tools for 

future hypersonic vehicle design, a combination of detailed measurements and higher fidelity numerical 

computations of viscous flow over large roughness elements are needed at this time.  In particular, current Navier-

Stokes computational tools must be improved both in accuracy and robustness in order to perform time accurate 

computation of hypersonic viscous flows.   

 

Depending upon its size and shape, a discrete roughness element may influence a laminar hypersonic boundary layer 

in different ways.  In the present study, we focus on roughness heights that are comparable to the thickness of the 

approaching boundary layer. Typical roughness shapes (both that occur naturally and those studied in controlled 

wind tunnel experiments) cannot be easily simulated with structured grid codes. Therefore, unstructured grid codes 

are to be preferred for the present application.  Roughness introduces flow separation both ahead of and behind the 

roughness element, with a complex pattern of accompanying shocks that interact with the boundary layer and the 

bow shock emanating from the nose.  The reverse flow regions may give rise to absolute or convective instability at 

large enough roughness heights, resulting in a spontaneously unsteady flow and transition in the neighborhood of the 

roughness site.  At low speed, a rectangular roughness element brings about absolute instability and vortex shedding 

downstream.  This phenomenon is well known and has been documented in the literature.  For example, in ref. [12], 
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it was observed and measured experimentally that flapping and strong vortex motion can originate from both the top 

and the side faces of the rectangular prism, resulting in sinuous or varicose modes in the wake region.  In contrast, 

flow physics around large roughness elements immersed in supersonic or hypersonic boundary layers is relatively 

less understood due to limitations in instrumentations and flow visualization techniques.  However, Demetriades 

[17] investigated transition induced by discrete trips in hypersonic boundary layers at Mach number of 3, 7, and 8.  

It was found that a wedge height several times the boundary layer thickness is required to trip the boundary layer. 

 

Most existing unstructured mesh CFD codes are based on well-known upwind schemes that utilize a 1D 

approximate Riemann solver at cell interfaces. Unique flow dependent variables determined by the Riemann solver 

are required at these cell interfaces to integrate the governing conservation laws over the discretized domain. When 

applied to multi-dimensional flows, such one-dimensional approximations give rise to undesired numerical issues, 

especially for triangular or tetrahedral unstructured meshes [1].  Remedies exist but in general, lack robustness.  For 

hypersonic applications, carbuncle phenomenon takes place near the blunt nose region [2] and accurate computation 

of viscous flows with tetrahedral meshes remains a challenge [3]. 

 

A time-accurate, unstructured mesh Navier-Stokes solver, ez4d, [4, 5] based on the space-time conservation element, 

solution element (CESE) method [6, 7] is used in this study to perform both steady state and time-accurate 

calculations for various roughness shapes and sizes.  Unlike conventional upwind methods, the CESE method is a 

genuine multi-dimensional scheme formulated by enforcing flux conservation in the discretized space and time 

domain.  Integration of the conservation laws is carried out on staggered discretized volumes called conservation 

elements (CE).  Consequently, no interface reconstruction or dimensional-splitting is needed.  Flux conservation in 

space and time offers distinctly better numerical properties, both in terms of boundary condition treatment and 

temporal accuracy.   

 

The main objective of this paper is to investigate hypersonic viscous flow over a large roughness element using the 

unstructured mesh space-time CESE method.  While simple roughness shapes can be handled with existing 

structured mesh computational tools, more complex roughness shapes of practical importance may cause difficulties 

in grid generation.  For this reason, some researchers have used the immersed boundary formulation in conjunction 

with existing time-accurate compressible Navier-Stokes solvers to handle the roughness geometry [8, 9].  While 

such an approach may be implemented in existing structured mesh codes, it could encounter difficulties in dealing 

with complicated shock patterns arising from the interaction of complex roughness geometries with the boundary 

layer flow.  In principle, an unstructured mesh could also save computational time by eliminating unnecessary grid 

clustering near the block interfaces as mandated by topological connectivity.  The primary focus of this paper 

corresponds to exploring possible absolute instability of a large roughness element at Reynolds numbers well below 

the range where natural transition due to known instability mechanisms would be expected to ensue.  Both steady-

state and time-accurate calculations are performed for both 2D and 3D rectangular roughness elements of height 

comparable to or larger than the boundary layer thickness.  The flow conditions are derived from the on-going series 

of NASA LaRC experiments by P. Danehy and colleagues [10].  These experiments have provided unique flow 

visualization data pertaining to the vorticity structures induced by roughness elements of various shapes and sizes.  

Given the scant knowledge base concerning the physical mechanisms underlying roughness effects on transition, 

such global flow visualization database can add unique value by allowing one to relate the measured flow structures 

in the roughness wake to those obtained from unsteady flow computations.  

 

In the following section, a brief description of the numerical method used is given, followed by a grid sensitivity and 

temporal accuracy study.  In the Results and Discussion section, the focus is on three topics: 1) parametric study for 

vortex shedding behind a 2D roughness element 2) 3D rectangular prism roughness 3) cylinder roughness.  A brief 

summary is given at the end. 

II. Numerical Method 

 

Three-dimensional compressible Navier-Stokes equations in vector form can be written as 
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where the dependent variable vector is defined as Q = (ρ, ρu, ρv, ρw, e) and x, y, z, and t represent spatial 

coordinates and time, respectively. Flow variables ρ, u, v, w, and e represent density, three velocity components, and 

total energy ( 2/)()1/( 222 wvupe +++−= ργ ), respectively. Definitions of the inviscid flux vectors F, G, 

H and viscous flux vectors Fv, Gv, Hv can be found in standard text books (e.g. Hirsch [25]) and will not be included 

here. The source vector K contains all external forcing or other energy-related source terms. For axisymmetric flows, 

H = Hv= 0 and K contains extra terms associated with the cylindrical coordinate system. The Euler equations are 

recovered by neglecting all viscous and source terms on the right hand side of the equation. To close the system, the 

perfect gas relation, RTp ρ=  is used in conjunction with eq. (1). 

 

The space-time CESE method is formulated in the strong form of the flux equations. The space-time flux h
r

is 

defined as: 
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By using Gauss’ divergence theorem in the space-time domain, eq. (1) is rewritten in the following integral form 
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where the space-time flux vector is integrated over the surface S of an arbitrary space-time volume V.  The surface 

normal vector is defined by dAns
rr

= , where dA is the area increment on S, and n
r

is the outward unit normal 

vector.  Equation (3) is quite general, and in fact, any conservation law with or without a source vector can be cast 

into this form.  Thus, the numerical algorithm devised for eq. (3) can be easily extended for other physical problems. 

 

The space time CESE method is formulated by enforcing flux conservation over a discretized space-time domain.  

For the triangular element shown in Fig. 1, numerical solution of the dependent variables within the triangular 

element BDF is assumed to satisfy the following first order equation: 

 

)4()()()(),,( 0000 yyQxxQttQQtyxQ yxt −+−+−+=  

 

where Q0 is the solution vector at the solution point O. The vectors Qt, Qx, Qy, and Qz are analogous to the 

derivatives of the dependent variables.  In contrast to the conventional unstructured mesh method, flux integration is 

carried out not on the triangular element directly.  Instead, three conservation elements (quadrilaterals GBCD, 

GDEF, and GFAB) around three neighbors are used for the integration of the conservation laws.  In the space-time 

domain, these three quadrilateral CEs extend to three quadrilateral prisms.   The solution point O is defined as the 

geometric center of three conservation elements, ABCDEF.   the discretized flux equation for all three prisms can be 

simplified to 

 

)5()( 3210321 vKIIIQAAA +++=++  

 

where A1, A2, and A3 are the surface areas of GBAF, GFED, and GDCB, respectively.  Discretized integrals I1, I2, 

and I3 are flux integrals for outer-side and bottom faces for three surrounding elements.  Source terms in eq. (3) can 

be integrated to form Kv.  Semi-implicit treatment of this source term is usually done to improve solution accuracy 

and avoid stiffness issues in reacting flows [4].  Equation (5) is an algebraic equation and can be solved easily 

without any matrix conversion.  The use of eq. (4) results in a formally second-order accurate scheme.  

 

In the above discretized equation, flux integrations are carried out on all faces of the conservation elements shown in 

Fig. 1(b).  Flux vectors are evaluated at faces AB, BC, CD, DE, EF, and FA in the integrals I1, I2, and I3.  These faces 

reside over the smooth regions of all three neighboring elements.  As a result, flux vectors are uniquely defined in 

the discretized equations, no exact or approximate Riemann solver is needed.  In light of all the numerical issues 

associated with the multi-dimensional upwind methods, this distinct feature of the CESE method offers a numerical 

framework that is superior to other methods in terms of the flux conservation properties in the discretized domain.  
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The derivatives Qt, Qx, and Qy, in Eq. (4) are yet to be determined.  In the non-dissipative a-scheme, these 

derivatives are computed by solving two remaining flux equations (in addition to the summation of all three 

conservation elements, Eq.(5)) in conjunction with the following equation: 

 

KBQAQQ yxt =++  

 

where A and B are the Jacobian matrices of the flux vectors F and G, respectively.  Thus, there are a total of three 

equations for three unknowns.  Unfortunately, the a-scheme is only neutrally stable for the nonlinear Euler and 

Navier-Stokes equations and cannot be used in general.  Nevertheless, the formulation of such a dissipation-free 

scheme serves as a baseline to gauge how much numerical dissipation is being added in the dissipative scheme used 

in Euler or Navier-Stokes equations.  In practice, derivatives are evaluated by using solution variations around three 

neighbors.  In the original CESE method, three neighboring solution points are used to obtain three sets of Qx, and 

Qy.  The unique values are determined by applying a weight average over three sets of derivatives.  The weighted 

average helps to eliminate oscillations around flow discontinuities.  While this approach works fine for relatively 

uniform meshes, numerical problems arise for highly non-uniform mesh where the triangles used for derivative 

evaluation are inconsistent with the CE faces.  The edge-based derivative approach suggested in ref.[5] modifies the 

derivative evaluation procedure to remedy the above shortcomings.  In this approach, the three vertices of the 

triangular elements with dependent variables evaluated by using three neighboring solution elements are used to 

obtain three sets of neighboring derivatives.  The same weighted average procedure is then used to uniquely 

determine the derivatives.  There are several weighted average procedures suggested by Chang [7,11].  In this paper, 

the second weighting function described in ref. [11] is found to be the most effective and robust.  The weighted 

average is analogous to flux limiters used in conventional upwind schemes.  However, it should be noted that in the 

CESE method, one universal weighted average works for all problems.  No tuning for shocks or stagnation regions 

is necessary.  

 

 

 
 

 

The above derivation is valid for 2D triangular elements but it can be extended easily for 3D equations.   There are 

questions often raised concerning the fact that a picture of 3D conservation elements similar to that shown in Fig. 1 

for 2D cases cannot be drawn.  In practice, the CE manifolds need not to be drawn for 3D solutions.   As long as the 

physical time is uniquely defined on each CE faces in the flux integration procedure, it is irrelevant how these CE 

manifolds look like in a four-dimensional space.  Both hexahedral and tetrahedral meshes are used in the present 

study for hypersonic viscous flow computations. 
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Figure 1. Conservation elements for a 2D triangular mesh: (a) top view   (b) space 

time CE volume 
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The other issue often raised concerns the fact that for the CESE method, numerical dissipation increases 

significantly when the CFL number is decreased.  For this reason, steady state calculations are done by using local 

time-stepping, i.e., constant CFL number for all elements.  Normally, a CFL number as close to one as possible is 

used to ensure accuracy.  For time-accurate calculations, a constant time step implies that the CFL number varies 

substantially over the domain if a highly non-uniform mesh is used.   The Courant number insensitive (CNI) method 

[11] should be used to avoid excessive numerical dissipation in the coarse mesh region.  For the edge-based 

derivative approach, the vertices used for derivative calculations are pushed away from the solution point to increase 

numerical dissipation and pushed inward to reduce the dissipation.  A parameter σ is used to control numerical 

dissipation.  An σ value of 1 means zero dissipation.   In a CNI scheme, the σ value is very close to 1 in the coarse 

grid region and increases to a larger value (around 1.3~1.5 for subsonic flows, and 5 or higher for supersonic flows 

with shocks) maintain numerical stability in the highly stretched mesh inside the boundary layer.   As will be shown 

later, the CNI scheme plays an important role in unsteady calculations. 

III. Grid Sensitivity and Temporal Accuracy Using CNI 

 

Grid Sensitivity Study 

 

In preparation for time-accurate fine-resolution 2D and full 3D calculations, grid sensitivity study is performed for a 

simplified 2D roughness at conditions similar to wind tunnel experiments [10].  A Mach 9.65 flow approaches a flat 

plate at an angle of attack equal to 10 degrees.  The post shock Mach number is 6.515.  The free stream temperature 

is 53.3 K and the unit Reynolds number is 3.513 x 10
6
 per meter.  The wall temperature is 308 K, which amounts to 

a ratio of about 0.34 with respect to the adiabatic wall temperature at the post shock condition.  The triangular mesh 

along with the free-stream conditions is shown in Fig. 2, wherein the roughness element is centered on x = 0.  The 

coordinates shown are in mm, which will be used as the unit throughout this paper.  There are about 497,000 

triangular elements in the planar mesh.  Both the boundary layer and the inviscid regions are well-resolved.  The 

numerical Schlieren picture based on the computed base flow solution is shown in Fig. 3.   The roughness causes the 

flow to separate both ahead of and behind the roughness element.  The streamwise velocity contours along with 

streamlines near the roughness location are shown in Fig. 4. The elongated separation region also modifies the 

effective viscous body shape and in turn leads to a secondary shock.   Interaction of this secondary shock with the 

primary shock causes the merged shock to tilt slightly downward towards the test surface.  The theoretical numerical 

stability limit of the CFL number for the CESE method is one.  The higher the CFL number, the more accurate (less 

numerical damping) the solution is.  The flowfield shown here was calculated by using local time stepping with a 

CFL number of around 0.8.   

 

 

       
 

 

 

 

Figure 2.  Mesh and free-stream conditions for a 2D 

rectangular roughness element (h = 2 mm). 
Figure 3.  Computed Schlieren image, including an 

enlarged view near the roughness. 



 

American Institute of Aeronautics and Astronautics 

 

6 

In the above computations, a very fine mesh along the wall-normal direction was used to insure proper initial growth 

of the boundary layer near the leading edge.  As a result, very high aspect ratio meshes must be employed near the 

inflow boundary.  One way to avoid the potential side effects (e.g. very small time step) of such a mesh on time 

accurate solutions is to start the time accurate computation sufficiently downstream of the leading edge, where both 

the shock and the boundary layer have already settled down and the peak grid aspect ratios are lower than those near 

the leading edge.  To verify the accuracy of the solutions obtained in this manner, a truncated streamwise domain of 

x = [-62, 44] from the full domain shown in Fig. 2 was also used for calculations at the same free-stream conditions.  

The converged solution obtained from the full domain simulations was specified as the inflow profiles at x = -62.  

The computed solution for this truncated domain is compared to the full-domain solution in Fig. 5.  Almost no 

visible difference exists between these two sets of solutions.  Therefore, to save computational time and to avoid 

high aspect ratio meshes, 3D computations performed herein will be initiated at a location downstream of the 

leading edge. 

     
     

           

                         
 

 

 

 

For grid sensitivity study, we generated a coarser mesh with 254,000 triangular elements, i.e., approximately one 

half the number of cells as those used for the baseline computation in Fig. 2.   The computed streamwise velocity 

and temperature profiles in the wake region are compared at x = 12 in Figs. 6.  For the most part, only very small 

differences are observed between the coarse and fine meshes.  Although not shown here, agreement at other 

Figure 5.  Comparison of Mach number contours for 

full and truncated domain. 

Figure 6.  Comparison of (a) streamwise velocity and (b) temperature distribution at x = 12 using 

coarse and fine meshes. 

Figure 4.  Streamwise velocity contours and 

streamline paterns for the front and back 

separation regions. 

(a) (b) 
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locations is also very good.  Therefore, the grid size used in the fine mesh appears to be appropriate to resolve the 

flow around the selected roughness elements.  

 

As a first step in assessing the effect of roughness height, we compute a similar case that corresponds to ¼ of the 

roughness height considered in Fig. 2.   The computed Schlieren picture for the smaller height configuration is 

shown in Fig. 7.  In comparison with Fig. 3, the shock structure is quite different.  Because the upstream separation 

region is now diminished in extent, the secondary shock does not form until very close to the roughness.  

Furthermore, the secondary shock is weaker and, therefore, has a weaker effect on the primary shock.  Figure 8 

shows the streamline patterns and streamwise velocity contours corresponding to the flow in Fig. 7.  The front side 

separation bubble is now substantially smaller than in Fig. 4.  Indeed, the back side separation region appears to be 

larger than the front side.  Grid sensitivity study similar to the one discussed for the larger roughness height has also 

been performed using approximately one half of total number of mesh points.  Again, negligible differences were 

noted between the fine and coarse mesh solutions.  

                      
 

 

    

Temporal Accuracy Using CNI 

 

The CNI scheme is important for time-accurate viscous calculations because of the large disparity in grid sizes to 

resolve the boundary layer.  To assess its effect for roughness elements calculations, a Mach 0.3 flow over a 

rectangular shape roughness is used as a test problem.  Free stream temperature is 300 K and adiabatic wall 

boundary condition is used.  A subsonic Mach number is selected here in order to study temporal accuracy when 

large disturbances and vortex shedding are present in the flowfield.  Figure 9 shows computed vorticity contours at 

one time instant near the roughness element using both CNI and a constant dissipation parameter of σ = 1.9.  A 

quadrilateral mesh with proper resolution inside the boundary layer is also shown in the figure.  The CNI scheme 

resolves the vorticity better than using a constant dissipation.  These results illustrate that the CNI scheme should be 

used to reduce numerical dissipation for time-accurate calculations.  For all unsteady calculations shown in this 

paper, the CNI scheme is always used.   To further assess the CNI scheme for 3D calculations, a hexahedral mesh 

generated by using the 2D quadrilateral mesh as the baseline is used to compute the same Mach 0.3 flow over a 

cubic roughness element.  The resulting vorticity magnitudes at one time instant after the vortex shedding is 

established are shown in Fig. 10 along with a close-up view of the mesh.  It shows that vortex shedding is well 

capture for 3D calculations. 

 

Due to difficulties in unstructured viscous grid generations, a normal practice is to slice a structured quadrilateral or 

hexahedral mesh into triangles or tetrahedrons.  The 2D quadrilateral mesh shown above is sliced into triangles.  

Consequently, the number of elements doubles but computations per element decrease because of fewer neighboring 

elements.  Overall computational effort is only increased by about 57% for the above mesh (55,000 quadrilaterals 

and 110,000 triangles).  For the CESE method, non-dissipative schemes can only be constructed for a triangular or 

tetrahedral element.  In contrast, discretized equations for a quadrilateral or hexahedral element always have 

Figure 8.  Streamline pattern and streamwise 

velocity contours for a smaller roughness height 

(h=0.5 mm). 

Figure 7.  Numerical Schlieren picture for a smaller 

roughness height (h = 0.5mm). 
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intrinsic numerical dissipation.  Thus numerical dissipation and solution accuracy can be better controled using a 

triangular or tetrahedral mesh.  Computed vorticity results clearly confirm that a triangular mesh gives better 

resolution.  Figure 11 shows representative vorticity contours from both meshes at two slightly different time 

instants.  The triangular mesh gives better resolution of the vorticity contours.  The spinning of vortices and 

positive/negative (red/blue) paring are more clearly defined when a triangular mesh is used.  For the parametric 

study discussed in the next section, a triangulated structured mesh is used throughout. 

 
 

 

 

Figure 9.  Instantaneous vorticity contours computed with a quadrilateral mesh for a Mach 0.3 

flow using two different numerical dissipation models : (a) constant dissipation (b) CNI scheme  

(a) (b) 

Quadrilateral Mesh 

Figure 10.  Instantaneous vorticity contours computed with a hexahedral mesh for a Mach 0.3 

flow over a cubic roughness element: (a) symmetry plane (b) y = 0.8 plane (c) mesh 

(b) 

(c) 

(a) 
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IV. Results and Discussion 

 

Based upon the accuracy study, detailed numerical computations were performed for several case studies.  As 

mentioned previously, the main objective is to gain knowledge about flow physics in the presence of roughness 

elements at subcritical Reynolds number ranges (i.e. below the linear stability limit).  A key issue is whether 

absolute instability or strong vortex shedding are present at the flow conditions of interest.  To this end, 2D and 3D 

computations were carried out for: 1) parametric study of vortex shedding over a rectangular roughness element 2) 

hypersonic flow over a 3D rectangular fence 3) similar flow over a 3D cylinder element.  Details of computational 

results and discussion are described in the following three subsections. 

 

Parametric Study of Vortex Shedding over a Rectangular Roughness 

 

Initial attempts at obtaining time accurate solution for 3D trips at high supersonics Mach numbers yielded an almost 

stationary (time-independent) state.   Therefore, it was decided to perform additional parametric computations. 

Preliminary results based on 2D simulations involving a square shaped, 2D hump for Mach numbers ranging from 

0.3 to 2.0 are presented herein.  Typically, at subsonic Mach numbers, nearly periodic vortex shedding was observed 

at large enough Reynolds numbers based on the roughness height.  Figure 12 shows a snapshot of instantaneous 

vorticity distribution near the hump for M=0.3 and M=0.8. Analogous vortex shedding phenomenon has been 

observed in low-speed experiments as well as computations involving 3D roughness elements [12,13].  On the other 

hand, while there exist computations of 2D separating flows without humps where spontaneous shedding has been 

noted in the past [14,15], we were unable to find experiments involving 2D humps wherein similar behavior has 

been noted.  Experiments by Klebanoff et al. [16], for instance, appear to indicate a stationary flow behind shallower 

2D humps. While the absence of vortex shedding in their experiment might be related to their shallower hump 

geometries (i.e., smaller h/d and correspondingly lower Reynolds numbers based on roughness height), it’s also 

possible that the self-sustained unsteadiness in the computation may be numerical in nature.   

 

To further understand the nature of the above unsteady behavior, the time history of vertical velocity fluctuation at 

selected probe locations from (x-xr)/h = 2.5 to 20 are shown in Fig. 12(b) (where xr denotes the center of the 

roughness element) for M = 0.8.  The vertical location of each probe corresponds to the height of the hump in all 

cases.  It is seen that despite the relatively long streamwise region covered by the probe locations, each time series 

indicates the same dominant frequency (i.e., the fluctuations at that frequency are relatively global).  In contrast, the 

Figure 11.  Comparison of computed vorticity contours at two slightly different time 

instants using two different meshes (a) quadrilateral mesh (b) triangular mesh 

(a) (b) 
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corresponding solutions at supersonic Mach numbers of as low as M=1.2 approach a nearly steady behavior, even 

though the values of Reδ and h/δ0.995 are the same for both subsonic and supersonic cases (Fig. 13).  We note, 

however, that the probe histories similar to those to in Fig. 12(b) do indicate very weak yet regular oscillations even 

in the supersonic case (see the large time behavior in Fig. 13(b).  Whether or not the lack of prominent shedding in 

the supersonic case is related to the stabilizing effect of compressibility on free-shear layers (i.e., the separated flow 

immediately behind the hump) remains to be seen.  Additional computations are currently under way to better 

understand the nature of this vortex shedding and the role of absolute instability, if any, along with the effects of 

Reynolds number, Mach number, and three-dimensionality of the fluctuations and/or the roughness geometry.  

 

 

  

 

Figure 12(a).  Instantaneous vorticity distribution behind a 

square shaped hump at M = 0.3 and 0.8 (h/δ0.995 = 0.75, 

Red = 1200, where δ0.995 denotes the thickness of the 

unperturbed boundary layer at the roughness location) 

Figure 12(b).  Time history of vertical velocity 

fluctuation at selected probe locations over a 

streamwise extent of (x-xr)/h = 2.5, 5, 10, 20 for 

probes 1, 2, 3, and 4.  

 

Figure 12.  Flow field near a 2D hump: subsonic Mach numbers 

 

  

Figure 13(a).  Instantaneous vorticity distribution 

behind a square shaped hump at M = 1.2 and 2.0 

(h/δ0.995 = 0.75, Red = 1200, where δ0.995 denotes 

the thickness of the unperturbed boundary layer at 

the roughness location) 

Figure 13(b).  Time history of vertical velocity fluctuation at 

selected probe locations over a streamwise extent of (x-xr)/h = 

2.5 to 20.  The vertical location of each probe corresponds to 

the height of the hump, and each time series has been 

separately shifted in the vertical direction in order to allow 

visualization of multiple time series on the same plot. 

Figure 13.  Flow field near a 2D hump: supersonic Mach numbers 
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Hypersonic Flow over a Rectangular Fence 

 

Supersonic flows past a rectangular fence and a cylinder roughness element under two of the experimental 

conditions from NASA Langley’s Wind Tunnel experiments [10] were selected for full 3D computations.  In both 

conditions, the free-stream Mach number is 9.65 and free-stream temperature is 53.3 K.  Pure Sutherland law is used 

for all computations presented here.  The free-stream unit Reynolds number is 3.513 x 10
6
 per meter, which is 

calculated based on an estimate of the post-shock Reynolds number from the experiment [10].  The unit Reynolds 

number would be slightly higher if viscosity is calculated by Sutherland law using the experimental stagnation 

conditions.  The wall temperature is 308 K.  The only difference between two different wind tunnel conditions is the 

angle of attack, which is 10 or 20 degree for Conditions I or II, respectively.  The corresponding post-shock Mach 

numbers are 6.52 and 4.16, respectively.  The roughness height is fixed at 2 mm for both the rectangular fence and 

the cylinder.   Thus the roughness Reynolds number is 10,600 and 6800 for Conditions I and II, respectively.  The 

ratio of roughness height to boundary layer thickness is estimated to be about 0.82 and 1.3, for Conditions I and II, 

respectively.  Such roughness height is relevant for many hypersonic applications.  The Reynolds number is about 

3.84 x 10
5
 and 2.6 x 10

5
, respectively at the roughness center.  The width of the rectangular fence is 8 mm and the 

diameter of the cylinder is 2 mm.  

 

Based upon the grid sensitivity results shown above, we constructed a 3D tetrahedral mesh by stacking up the 

coarser 2D mesh over a rectangular prism roughness element with a height of 2 mm. Due to the lack of a robust 

tetrahedral grid generator available, the mesh was obtained by slicing the corresponding hexahedral mesh generated 

as a multi-block structured grid.  The streamwise clustering near the edges of the roughness is an outcome of the 

topological requirements for the viscous layer near the block interfaces.  To save computational time, the inlet of the 

3D mesh is located not at the leading edge but at x = -61.5 (see Fig. 2).  The center of roughness elements (for both 

rectangular prism and cylinder to be discussed in the next subsection) is located at x = 0.  The computational domain 

extends to about 50 mm downstream.  The converged 2D solutions obtained by the triangular mesh are imposed as 

the inflow boundary conditions. Two spanwise planes at z = 0 (located at the spanwise center of the roughness) and 

z = 20 (about 2.5 times the roughness width) are treated as symmetry planes.  Based on the good comparisons shown 

in the previous section, we consider this 3D mesh fine enough to adequately resolve both the inviscid and viscous 

regions.  The spanwise grid distribution is suboptimal due to the structured grid restriction and can be improved in 

future calculations.  There are a total of about 26.5 millions tetrahedrons, which is roughly six times the original 

multi-block structured hexahedral mesh.  Fewer elements are needed for the same solution accuracy if the mesh is 

generated by a truly unstructured grid generator.  Figure 14 shows the mesh distribution on the viscous surface and 

the roughness center symmetry plane. 

 

 

 
 

 

 

Figure 14.  Close-up of the surface and symmetry 

plane tetrahedral meshes for the 3D rectangular 

prism roughness. 

Figure15.  Numerical Schlieren picture at the 

symmetry plane for a rectangular prism at Condition I, 

enlargement near the roughness is also shown. 
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For all calculations presented herein, local time-stepping iteration was first performed for faster flowfield 

development.  Time-accurate computation with a constant physical time step is then turned on using the CNI scheme 

to assure better time accuracy.   Several time probes in the flowfield are monitored to ensure either steady-state or 

quasi steady-state has been reached.  Five representative probe coordinates and locations are summarized in Table 1. 

 

Table 1.  Coordinates and locations of the probe points 

Probe  x y z Location 

P0 -3.61 0.64 0.16 Front side separation region 

P3 3.16 0.92 0.16 Right behind the roughness 

P4 11.18 1.68 0.16 Near wake 

P5 30.56 1.70 0.16 Middle wake 

P12 47.69 1.72 1.90 Far wake 

 

 

For Condition I, the flow eventually settle to quasi steady state with some very small scale oscillations.  Figure 15 

shows the resulting numerical Schlieren picture at the z = 0 symmetry plane.  Similar elongated front side separation 

as in 2D results develops on the symmetry plane.  In addition to the free-stream shock, additional discontinuities are 

formed above the front-side separation region, on top of the roughness, and in the wake region.  Comparison of 

limiting surface streamline patterns with experimental surface oil flow visualization (Fig. 16) shows good  

qualitative agreement.  These surface limiting streamlines exhibit a complex pattern both in the forward and 

backward separation regions.  The zone of influence of the roughness element extends throughout almost the entire 

spanwise domain, which is five time the roughness width.   The streamline patterns within the separation regions are 

shown in Fig. 17.  The horse shoe vortex originated from the front side separation region wraps around the 

roughness element.  Its strength appears to decay downstream as the vortex passes the lateral sides of the roughness.   

Interestingly, streamlines from the front side separation region do not enter the back side separation region and stay 

mainly outside of the wake. 

  

                                       
 

 

 

 

 

 

 

Figure 16.  Comparison of computed surface limiting streamline with experimental surface oil flow 

patterns for the rectangular prism roughness under Condition I (a) numerical computation (b) 

experiments [10]. 

(a) (b) 
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To better visualize the wake development, spanwise distribution of streamwise velocity contours are plotted at four 

streamwise locations downstream of the roughness in Fig. 18.  These four planes are located at various distances 

from the roughness.  In the near wake region (x = 2.5 and x = 5), signature of the rectangular roughness is clearly 

visible.  The separated flow (negative streamwise velocity) region diminishes downstream and the flow is apparently 

reattached at x = 25.  In the far wake region, the contour exhibits a bulge shape with small valleys on both sides.  

 
 

 

Time history of the streamwise velocity and pressure at the above-mentioned five probe points is shown in Fig. 19.   

The absolute value of time is irrelevant in these calculations.  At all five probe locations, the flow has converged to 

steady state.  However, very small scale oscillations not visible in the scale still exist in most probe locations.  

 

The same rectangular roughness at Condition II is computed using the same tetrahedral mesh.  The computed 

numerical Schlieren at the symmetry plane is shown in Fig. 20.   The flow field is quite similar to that under 

Condition I, except the free-stream shock is slightly closer to the surface.  The corresponding surface limiting 

streamline pattern shown in Fig. 21 also appears to be similar to that for Condition I; however, the front side 

separation region extends slightly further upstream.  Again, the domain of influence extends substantially in the 

Figure 17.  Streamline patterns for rectangular prism roughness under Condition I, showing streamlines 

originating from (a) front side (b) back side of the separation region.   

(a) (b) 

Figure 18.  Streamwise velocity contours on a spanwise plane at four different locations 

downstream of the wake for rectangular prism roughness under Condition I. 
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spanwise direction.  During the initial stage of the time-accurate calculations, the limiting streamlines show a wavy 

pattern in the wake region.  However, these wavy patterns disappear at larger time. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 depicts the vorticity magnitude contours on a vertical plane at y = 1.   The vorticity pattern behind the 

roughness element appears to be quite stationary as compared to that shown in Fig. 10 where vortex shedding takes 

place at low speed.  Based on the results from the above 2D parametric study, vortex shedding, possibly caused by 

absolute instability, from the top face of the rectangular prism is unlikely to happen under supersonic conditions.  

Results in Fig. 22 further suggest that no vortex generation from the side faces takes place either.  It remains to be 

seen whether some waviness in the contours indicates any instability mechanism at all.  The streamwise velocity 

distribution at several wake locations shown in Fig. 23 exhibits a distinct mushroom-like structure near the end of 

the computational domain, which is not present in Condition I (see Fig. 18).  From stability stand point, such 

velocity distribution is likely to bring about strong shear-layer instability in the cross plane [19]. 

Figure 19.  Time history of (a) streamline velocity and (b) pressure at five different probe locations 

given in Table I for rectangular prism roughness under Condition I. 

(a) (b) 

 

 

 

Figure 20.  Numerical Schlieren picture at the 

symmetry plane for a rectangular prism at Condition 

II, enlargement near the roughness is also shown. 

 

Figure 21.  Surface limiting streamline patterns for a 

rectangular prism roughness under Condition II. 



 

American Institute of Aeronautics and Astronautics 

 

15 

           

 

 

 

 

 

Time history of streamwise velocity and pressure at the five probe locations for Condition II is shown in Fig. 24 

Unlike in Condition I, both velocity and pressure signals do not converge to a steady state.  The initial large 

oscillations gradually disappear.  However, noticeable oscillations are still present.  There appears to be a longer 

scale ridding on top of these small-scale oscillations.  Whether or not the flow would approach a quasi steady state 

eventually requires continuing computations beyond what is shown in the figure.  A rough estimate of the oscillation 

gives a frequency in the range of 100 kHz.  Further analysis is required to see if these oscillations are related to any 

instability wave.   For both conditions, no visible vortex shedding is observed.   However, NASA Langley’s wind 

tunnel experiments at Condition II using planar laser-induced fluorescence (PLIF) [10] indicate large disturbances 

downstream of the rectangular fence.  Though similar phenomena were not found by the present numerical 

computations, Condition II is apparently more unstable than Condition I owing to the facts that a mushroom 

structure appears and some unsteadiness is present in the time history.  External forcing, such as the wind tunnel 

noise, may result in large disturbances development in the wake region if convective instability is indeed the 

dominant mechanism. 

 
 

 

Figure 23.  Streamwise velocity contours on a 

spanwise plane at four different locations downstream 

of the wake for rectangular prism roughness under 

Condition II.  

Figure 24.  Time history of (a) streamline velocity and (b) pressure at five different probe locations 

given in Table I for rectangular prism roughness under Condition II. 

(a) (b) 

Figure 22.   Vorticity magnitude contours on y 

= 1 plane for a rectangular element under 

Condition II. 
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Hypersonic Flow over a Cylinder Roughness Element 

 

Parallel to rectangular elements, similar calculations were also performed for a cylinder roughness element with the 

same 2 mm height.  A hexahedral mesh with 5.6 million elements (Fig. 25), better suited for parametric study, is 

used for both Conditions I and II.   The computed numerical Schlieren picture and the surface pressure contours for 

Condition II are shown in Fig. 26  The shock pattern is similar to that for a rectangular fence, except the front side 

separation region induced shock and the wake region recompression shock are not present.  The same five probe 

points shown in Table I are used to monitor convergence.  Figure 27 compares the time history of pressure signal for 

both Conditions I and II.   The solution converges to a steady-state for Condition I.  Similar to the rectangular fence 

case, some small-scale oscillations persist for Condition II.  The signal exhibits multiple frequencies.  The dominant 

one is estimated to be around 50 ~ 70 kHz.  Again, further analysis may help clarifying whether these oscillations 

are indeed instability waves or numerical artifacts due to lack of resolution.  

 

Streamwise velocity contours at various locations downstream of the wake are shown in Fig. 28.  Similar to the 

rectangular fence case, Condition II gives rise to a mushroom-like structure near the end of the computational 

domain.  Such mushroom structure implies that for a fence or cylinder roughness height of 2 mm under wind tunnel 

Condition II, instability wave may be present in the wake region near the center line.  Since the square root of the 

Reynolds number at the roughness location under Condition II is only about 500, the boundary layer may just begin 

to become unstable for second mode disturbances. The instability wave associated with the inflectional mushroom-

like structure could be the dominant instability mechanism for breeding large disturbances, which in turn may cause 

early transition to turbulence downstream. 

 

 

       
 

 

 

 

 

Figure 25.  Close-up of the surface and symmetry 

plane hexahedral meshes for the 3D cylinder 

roughness element 

Figure 26.  Numerical Schlieren picture at the 

symmetry plane and surface pressure contours for a 

cylinder roughness at Condition II. 
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V. Summary 

The space-time CESE method is used to study hypersonic viscous flow over large roughness elements using 

unstructured meshes.  Both shock-shock and shock boundary layer interactions near the separation region are 

captured in the computed solution.  The multi-dimensional CESE scheme offers a robust numerical method to 

handle complex shock and viscous flows.  In all of the calculations, no tuning to accommodate the shocks was 

necessary; and grid converged solutions were demonstrated for the 2D case.  Both 3D hexahedral and tetrahedral 

meshes were used to compute steady-state and time-accurate hypersonic flows over a rectangular fence and a 

cylindrical roughness element.  For a post shock Mach number of 4.1 or higher, both 2D and 3D solutions with a 

roughness height exceeding the boundary layer thickness showed a larger separation region ahead of the roughness 

element than the one behind.  The perturbation induced by the roughness element extends two to three times the 

roughness width along the spanwise direction. The surface flow pattern agrees well with available experimental 

results.  Although no large disturbances were identified as in the experimental PLIF visualization [10], flow 

unsteadiness is observed downstream of the roughness element for both rectangular and cylindrical roughness 

Figure 27.  Comparison of time history of computed pressure signal for cylinder 

roughness at Conditions (a) I and (b) II. 

(a) (b) 

Figure 28.  Comparison of streamwise velocity evolution downstream of the wake for 

cylinder roughness element under Conditions (a) I and (b) II.  

(a) (b) 
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elements under the wind tunnel Condition II, which has a roughness height of about 1.3 times the boundary-layer 

thickness.  Further computations at larger Reynolds numbers are underway to explore other possibilities of large 

disturbances development in the wake, including convective instability mechanisms caused by external forcing.  A 

parametric study for a square shaped roughness element using 2D calculations showed the spontaneous onset of 

vortex shedding for subsonic Mach numbers at the Reynolds number considered herein (Reδ = 1200).  For 

supersonic boundary layers, no prominent vortex shedding was observed for a similar roughness height to boundary 

layer thickness ratio.  In such flows, any large disturbances downstream of the roughness are more likely to be 

related to the convective instability of the roughness wake.  A mushroom like streamwise velocity distribution is 

found in the wake of the roughness for one of the wind tunnel condition under investigation.  Elongated streaks of 

this kind can sustain stronger instabilities than those of the unperturbed boundary layer [19], potentially causing an 

earlier transition.  
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