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Abstract 

To reduce weight and increase the mobility, comfort, and performance of future spacesuits, 

flexible, thermally conductive fabrics and plastic tubes are needed for the Liquid Cooling and 

Ventilation Garment.  Such improvements would allow astronauts to operate more efficiently 

and safely for extended extravehicular activities. As an approach to raise the thermal 

conductivity (TC) of an ethylene vinyl acetate copolymer (Elvax™ 260), it was compounded 

with three types of carbon based nanofillers: multi-walled carbon nanotubes (MWCNTs), vapor 

grown carbon nanofibers (CNFs), and expanded graphite (EG).  In addition, other nanofillers 

including metallized CNFs, nickel nanostrands, boron nitride, and powdered aluminum were also 

compounded with Elvax™ 260 in the melt at various loading levels. In an attempt to improve 

compatibility between Elvax™ 260 and the nanofillers, MWCNTs and EG were modified by 

surface coating and through noncovalent and covalent attachment of organic molecules 

containing alkyl groups.  Ribbons of the nanocomposites were extruded to form samples in 



which the nanofillers were aligned in the direction of flow. Samples were also fabricated by 

compression molding to yield nanocomposites in which the nanofillers were randomly oriented. 

Mechanical properties of the aligned samples were determined by tensile testing while the degree 

of dispersion and alignment of nanoparticles were investigated using high-resolution scanning 

electron microscopy. TC measurements were performed using a laser flash (Nanoflash™) 

technique. TC of the samples was measured in the direction of, and perpendicular to, the 

alignment direction. Additionally, tubing was also extruded from select nanocomposite 

compositions and the TC and mechanical flexibility measured. 
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1. INTRODUCTION 

The development of lightweight, high thermal conductivity (TC), flexible materials for potential 

use in the Liquid Cooling and Ventilation Garment (LCVG) is of interest to NASA.  The LCVG 

is an integral component of the spacesuit that serves to remove body heat from astronauts. By 

improving the TC of the LCVG subcomponents (i.e., flexible fabric and cooling tubes), a 

reduction in the total weight of the cooling tubes can be realized, resulting in improved mobility 

and comfort. These improvements may lead to new, more advanced spacesuit designs that enable 

longer extravehicular excursions by future astronauts. One approach to enhancing the TC of the 

polymeric components has been to add nanoparticles which possess high TC. Various nanofillers 

used in this work are briefly described in the subsequent paragraphs.  

 

Carbon based nanoparticles are one type of material that is commonly used to improve the 

physical, electrical, and thermal properties of polymers and include expanded graphite (EG), 

carbon nanofibers (CNFs), and carbon nanotubes (CNTs). CNFs are highly graphitic fibers 

produced by a catalytic vapor deposition process and have been widely used as reinforcements 

for polymers like polyethylene [1], polypropylene [2,3], polycarbonate [4], nylon [5], and 

poly(methyl methacrylate) [6] in numerous high-technology applications. CNTs have high 

mechanical and electrical properties and ultra high TC [7, 8] and CNT-based composites are 

being studied extensively. Theory predicts the TC (κ) of single-walled CNTs (SWCNTs) at room 

temperature to be as high as ~6600 W/mK [9] while the experimental value for an individual 

MWCNT has been reported as 3000 W/mK at room temperature [10]. This value is significantly 

higher than that of known thermally conducting materials like diamond (up to 2300 W/mK) and 

graphite (up to 1960 W/mK). EG has excellent thermal and electrical properties, is one of the 
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stiffest materials found in nature and presently costs two orders of magnitude less than CNTs 

[11]. With appropriate surface treatment, dispersion of EG in a polymer matrix results in 

composites with excellent mechanical and electrical properties and high TC [12, 13-, 14 , , ,15 16 17]. 

 

Recent research has demonstrated the ability to functionalize nanomaterials such as layered 

silicate nanoclays, CNTs and CNFs, EG, and silica nanoparticles with a layer of highly 

conductive metal such as copper (Cu), silver (Ag), or nickel (Ni) [18]. Polymer nanocomposites 

(PNCs) of Ag-metallized CNFs have very high electrical conductivity and exhibit excellent 

shielding effectiveness [19]. Based on the results of previous studies, it was anticipated that 

these materials would also enhance the TC of Elvax based nanocomposite.  

 

Neat metallic materials have also been reported to increase the TC of composites and include Ni 

nanostrands and aluminum (Al) particles. Ni nanostrands are receiving increasing attention as an 

electrically conductive additive in polymers and composites. They are grown as an 

interconnected three-dimensional lattice of sub-micron and nanostructured strands of nickel and 

are paramagnetic in nature [20, 21]. Al-containing particles have also been used to enhance the 

TC of polymers [22]. Thus it was of interest to investigate the use of a combination of Al 

particles and some of the above mentioned nanofillers as an approach to achieving greater 

improvements in TC. 

 

Inorganic compounds such as boron nitride (BN) have been used to improve the TC of some 

ceramics with the resultant composites showing a considerable degree of anisotropy in TC [23]. 

BN powders are highly pure single crystal hexagonal platelets with particle sizes between 6 and 
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13 μm. The TC is also expected to be high for BN nanotubes whose parent material h-BN has 

exceptional ab-plane TC [24].  

 

The main problem with the use of these nanofillers is the difficulty in dispersing them in a 

polymer matrix. For example, to solve the dispersion problem usually associated with CNTs, 

various methods have been attempted which include preparation of the polymer in the presence 

of CNTs under sonication [25], the use of alkoxysilane terminated amide acid oligomers [26], 

melt mixing [27], high shear mixing [28], the use of surfactants and covalent functionalization 

of the CNTs with various groups. Covalent functionalization has been primarily achieved 

through carboxylic acid moieties generated on the CNT surface after oxidative treatment [29].  

 

The prominent thermal properties of CNTs have made them one of the most promising materials 

for future applications as thermal management materials and hence their preferred choice in this 

work. Enhancement of TC has been observed in CNT suspensions [30-31] with the measured 

TC values generally greater than theoretical predictions made with conventional heat conduction 

models. In the case of SWCNTs, peak TC falls off at higher temperatures due to Umklapp 

scattering [32]. For carbon-carbon composites, there is a larger mean free path and less phonon-

phonon Umklapp scattering causing the TC to increase linearly with heat treatment temperature 

[33]. Research in our lab has shown improvements in TC upon addition of MWCNTs and CNFs 

to a polyimide [34, 35]. However in PNCs, the improvement in TC has always been lower than 

rule-of-mixture values. In addition to the dispersability issue, another reason that anticipated TC 

enhancements are not realized is that of thermal interface resistance or Kapitza resistance [36]. 

This resistance represents a heat flow barrier associated with the differences in the phonon 
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spectra of the two phases and weak contact at the interface, both of which lead to phonon 

backscattering. One approach of reducing this interface problem is by covalent attachment of 

CNTs to the matrix. Molecular dynamics simulation on SWCNTs showed that functionalization 

with octane on one out of 15 CNT carbon atoms (~7% functionalization) reduced the thermal 

interface resistance more than three times. However, it was also reported that these attachments 

can act as phonon scattering centers themselves and thus reduce CNT conductivity [37]. The 

effect of functionalization of SWCNTs on the TC of nanocomposites has also been studied using 

a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to 

the surface of a SWCNT with covalent chemical bonds should result in a significant increase in 

the TC of these nanocomposites [38].  

 

The primary objective of this work was to enhance the TC of Elvax™ 260 by nanofiller addition. 

This polymer is currently used in tubing application since it provides outstanding toughness and 

resilience while maintaining flexibility over a broad temperature range without the need for 

plasticizers. Melt compounding was chosen as the method to disperse nanoparticles in Elvax™ 

260 because the technique involves shear mixing, which helps disentangle the nanoparticles and 

disperse them more uniformly within the matrix. Melt mixing was followed by extrusion in some 

of the samples described herein. The process of extruding nanocomposite through a suitable die 

and subsequent drawing led to continuous ribbons of nanocomposites with substantial 

nanoparticle orientation in the flow direction. Dispersability of the nanoparticles was assessed by 

high resolution scanning electron microscope (HRSEM) and fabricated specimens were 

characterized for their room temperature tensile properties and TC. The preparation and 
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characterization of samples containing various wt% loadings of the aforementioned nanoparticles 

are discussed.  

2. EXPERIMENTAL 

2.1 Materials Elvax™ 260, a melt processable ethylene vinyl acetate copolymer resin was used 

as received from E.I. du Pont de Nemours and Co. MWCNTs, VGE-S12 and VGE-S16, were 

procured from the University of Kentucky. CNF, Pyrograph - III - PR-24 HHT was obtained 

from Applied Sciences, Inc. and EG (Grade 3775) was received from Asbury Carbons. The 

graphite already had the galleries expanded by first treating with sulfuric acid and then rapidly 

heating the sample to 900 ºC. The expansion of the graphite was expected to facilitate exfoliation 

during melt mixing. Metallized CNFs (Ag, Cu, and Ni coated) were obtained from Materials 

Research Institute, LLC. Ni nanostrands were obtained from Metal Matrix Composites and BN 

powder (PolarTherm BN, grade PT140) from GE Advanced Ceramics. Al powder was obtained 

from Alcon-Toyo Industries, Inc. All other chemicals were obtained from commercial sources 

and used as received. 

 

2.2 Characterization HRSEM images were obtained using a Hitachi S-5200 field emission 

scanning electron microscope (FE-SEM) equipped with a “through-the-lens” secondary electron 

detector. Room temperature thin-film tensile properties were determined according to a modified 

version of ASTM D882 using either four or five specimens (0.51 cm wide) per test condition 

using an Eaton Model 3397-139 11.4 kg load cell on a Sintech 2 test frame. The test specimen 

gauge length was 5.1 cm and the crosshead speed was 0.51 cm/minute for the MWCNT, CNF 

and EG samples. For other samples, the crosshead speed was increased to 50 cm/min due to high 

elongation to break. Thermogravimetric analysis (TGA) was performed on the modified 
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MWCNT and EG powder samples using an Auto TGA 2950HR (TA Instruments, DE) in argon 

at a flow rate of 50 mL/min. The samples were heated at 20 oC/min to 100 oC, held for 0.5 h to 

drive off any moisture, and then heated to 600 oC at a rate of 2.5 oC/min. The TGA data taken at 

500 °C was used to determine the amount of aliphatic groups present. At this temperature the 

organic (aliphatic) groups would decompose without affecting the nanofillers. Thermal 

diffusivity of the molded samples as well as ribbons was measured at 25 oC using a Netzsch LFA 

447 NanoFlash according to ASTM E1461. Sample sizes of 1 cm x 1 cm were cut by an Isomet 

low speed saw with a diamond wafering blade; 12.7 cm diameter and 0.5 mm thick with 30 HC 

diamond (Buehler Ltd). Sample density was calculated by measuring sample dimensions and 

mass. Specific heat of each test sample was measured by comparing the temperature rise of the 

sample to the temperature rise of a standard reference sample (Pyrex, TC ~ 1.09 W/mK, Cp ~ 

0.76 J/gk) tested under the same conditions. The steady-state TC was calculated through the 

equation 

ρλ DC p=  

where λ is TC, Cp is specific heat, D is thermal diffusivity, and ρ is the material density. Samples 

were sprayed with a thin layer of graphite for uniform thermal adsorption, which was easily 

rinsed away by solvent (e.g. methanol).  

  

2.3.1 Coating of 1-dodecylbromide on carbon allotropes (MWCNTs and EG 3775) 

To a three-necked round-bottom flask equipped with a nitrogen inlet, mechanical stirrer, and 

drying tube was charged EG 3775 (20.0 g). The flask was then flame dried under nitrogen and 

cooled to ambient temperature. Tetrahydrofuran (THF, 400 mL) was added and the mixture 

sonicated at room temperature for 1 h in an Ultrasonik 57X bath operating at ~50% power and 
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degas levels. 1-Dodecylbromide (91.82 g) was subsequently added and rinsed in with 50 mL 

THF and the mixture stirred under nitrogen at room temperature for 48 h. The product was 

recovered by vacuum filtration, washed twice with diethyl ether, and air dried at 110 °C 

overnight to afford 19.7 g of product. The amount of 1-dodecylbromide on the EG was 0.1 wt % 

as determined by the weight loss at 500 ºC by TGA. A similar process was carried out using 

MWCNTs. 

 

2.3.2 Covalent attachment of 1-dodecylamine on carbon allotropes (EG 3775)  

To a single necked round-bottom flask equipped with a magnetic stir bar and condenser was 

charged EG 3775 (21.8 g), thionyl chloride (300 g), and N,N-dimethylformamide (2 mL). The 

mixture was refluxed for 48 h and excess thionyl chloride removed by distillation. The product 

was washed with diethyl ether, recovered by vacuum filtration, and dried at 35 °C for 1 h under 

vacuum. The as-isolated material (22.31 g) was added to a three-necked 500 mL round-bottom 

flask equipped with a nitrogen inlet, mechanical stirrer, and drying tube. N,N-Dimethylacetamide 

(200 mL) and 1-dodecylamine (12.8 g) were then added and the mixture stirred at room 

temperature under nitrogen for 48 h. The product was recovered by vacuum filtration, washed 

with ethanol, and air dried at 50 °C overnight in flowing air to afford 22.54 g of product. The 

amount of 1-dodecylamine was 4.1 wt % as determined by the weight loss at 500 ºC by TGA. 

 

2.4.1 Melt mixing of Elvax™ 260 with nanofillers Elvax™ 260 was compounded with 

MWCNTs, CNFs and EGs in a 60 cc internal mixer (Plasticorder PL2000, Brabender) for 3 h at 

25 rpm and 125 °C under a N2 purge. MWCNTs (20 and 30 wt %), CNFs (20, 30 and 40 wt %), 

and EG (20, 30, and 40 wt %) were added to the polymer. 30 wt % Al powder was melt mixed 
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with 20 and 30 wt % loadings of MWCNTs, CNFs and EG. Attempts at mixing the polymer with 

higher nanofiller loadings (40 wt %) were not possible as there was not enough polymer to bind 

the high loading of nanofillers and Al powder. The loading level used for BN was 20 wt % and 

20 and 30 wt % loading levels of Ag, Cu and Ni coated CNFs and Ni nanostrands were used. 

During mixing the torque produced was measured and used to calculate the viscosity of the 

sample. Upon completion of mixing, the material was ground in a Mini-Granulator (Kayeness, 

Inc.) using a 5.5 mm screen.  

 

2.4.2 Extrusion of Elvax™ 260 with nanofillers Samples were extruded through a Laboratory 

Mixing Extruder (LME, Dynisco, Inc.) with a 0.38 mm x 19.1 mm die at a mandrel temperature 

of 50 °C and a die temperature of 125 °C. Samples were extruded in the form of continuous 

ribbons that were 0.1-0.5 mm thick, 10-15 mm wide, and several meters in length. Tubing was 

extruded using the same extruder and a 0.476 cm outer die (o.d.) die head and a 0.3175 cm 

mandrel tip at a mandrel temperature of 50 °C and a die temperature of 130 °C. For Al-

containing samples, ribbons were extruded using a 1.27 cm single screw extruder (L:D – 15:1) at 

10 rpm. The CW Brabender extruder was attached to the PL2000 and the temperature at the three 

zones were 50 °C (hopper), 115 °C (barrel mid-section) and 115 °C (die). Tubing was extruded 

using a the same extruder with a 0.476 cm o.d. die head and 0.3175 cm mandrel tip at 10 rpm 

and the temperature at the three zones were 50 °C (hopper), 100 °C (barrel mid-section) and 105 

°C (die). 

 

2.4.3 TC sample fabrication of Elvax™ 260 with nanofillers Samples with parallel alignment 

of the nanofillers in the flow direction were obtained from cut ribbons of Section 2.4.2. For 
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samples with perpendicular nanofiller alignment the following procedure was performed. The 

extruded ribbons were cut into pieces approximately 2 cm x 2 cm, then stacked on one side of a 9 

cm x 2 cm x 3 cm (inner diameter i.d.) mold and the remainder of the mold was filled with 

Elvax™ 260 pellets. The stacked ribbons were compression molded at 80 °C and 1.72 MPa for 2 

h. The molded samples were sliced using the Isomet low speed saw described previously. 

Randomly oriented samples were made using a Laboratory Mixing Molder (LMM Dynisco, Inc.) 

and a rectangular mold (1.52 mm x 38.1 mm x 1.27 mm). A rough blend of materials was added 

to the mixing bowl of the LMM kept at 125 oC and maintained for 0.5 h. The blend was 

dynamically pressed at a rotational speed of 100 % of ram-motor capacity and static pressed to 

degas, before passing through the nozzle orifice (~1.6 mm) into the rectangular mold kept at 125 

oC. The material was then manually compressed at ~ 4.5 kN and set under pressure from the ram 

while being air cooled.  

 

For Al-containing samples, specimens were prepared from ribbons using compression molding at 

80 °C and a pressure of 1.72 MPa for 2 h.  Samples for TC analysis were prepared from the 

plaques by cutting them with a diamond wafering blade as above.  

 

3. RESULTS AND DISCUSSION 

3.1 Modification of MWCNTs and EG 3775 The surface of the MWCNTs and EG 3775 were 

modified with aliphatic groups through surface coating (electrostatic) and covalent attachment. 

Electrostatic attachment was accomplished with 1-dodecylbromide and generally resulted in less 

than 0.2 wt % loading. An approximate order of magnitude increase in loading was observed 

with the covalent attachment of 1-dodecylamine through formation of an amide linkage by the 
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reaction of the acid chloride modified carbon allotrope and the aliphatic amine. Representative 

TGA curves of the various modifications to EG 3775 are shown in Figure 1. The TGA data was 

used to qualitatively determine the wt% loading of aliphatic groups on the EG. As evident from 

the figure, there is a higher amount of the aliphatic present via covalent attachment on the EG as 

there is a greater wt% loss in the TGA curve. 

 

3.2 Processing of Elvax™ 260/nanofillers Torque values were obtained during mixing in the 

Plasticorder and used to calculate sample melt viscosities. Table 1 denotes the calculated melt 

viscosities of the various samples at 125 °C and a shear rate of 92.5 sec-1. The main purpose for 

obtaining the viscosity data was to evaluate if the nanocomposite samples could be extruded into 

ribbons using the LME and hence the data is for qualitative evaluation only. It was observed in 

previous studies [39] that most materials could not be extruded at high filler loadings when the 

viscosity was above a certain value, typically 5000 – 6000 MPa. But for Elvax™ 260 

nanocomposites with loading levels as high as 50 wt% the melt viscosity was typically within the 

range of extrusion. As expected, the neat resin had the lowest viscosity and these values 

increased with increasing nanofiller loading. However, modification of MWCNTs with long 

chain aliphatic groups lowered the viscosity compared to unmodified MWCNTs at a similar wt 

% loading. The torque data for the modified EG went off the lower end of the scale implying that 

the material exhibited a very low viscosity. Thus the material could not be compared to the 

unmodified EG. It was also noted that the addition of some nanofillers, such as Ni nanostrands 

and BN powder, lowered the melt viscosity and it was assumed that these fillers may have had a 

plasticizing effect. Figure 2 shows a typical extruded ribbon. The primary purpose of extrusion 

was to align nanofillers in the flow direction. Stacked ribbons were molded and samples obtained 
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by cutting the molded block in the direction of the dotted line in Figure 3 using a diamond saw. 

In this way samples were obtained with alignment both parallel and perpendicular to the 

direction of TC measurement. Figure 4 shows the extruded tubes containing Elvax™ 

260/nanofillers. Some alignment of nanofillers in these tubes was expected although it might not 

be to the same extent as present in corresponding extruded ribbons.  

 

3.3 HRSEM of nanoparticles and extruded ribbons Figure 5(a) shows the 10 wt% MWCNT 

melt mixed ribbon while Figure 5(b) shows the 30 wt% MWCNT ribbon. In both cases it was 

observed that MWCNTs were aligned in the flow direction (indicated by the arrow). Figures 5(c) 

and (d) show the alignment at two CNF loading levels. Here, too, there is significant alignment 

of nanofibers in the extrusion direction. HRSEM images obtained for the 30 and 40 wt % EG 

extruded ribbon [Figure 5 (e & f)] respectively showed graphite platelets visible at high voltages 

that varied in size but were all under 1 µm in one dimension. By qualitative observation, the 

particles appeared to be predominantly well dispersed throughout the polymer and this was 

evident even at low magnifications. Assessment of EG alignment was not easily discernable in 

these images as well as others not shown due to the shape of the nanoparticle. Figure 6(a) shows 

the structure of Ni nanostrands while Figure 6(b) shows Ag-CNF samples. As a result of the 

metal coating on the nanofibers, their diameters have increased thus diminishing the benefit of a 

large aspect ratio offered by the CNFs. Figure 7(a) shows Al particles in the form of flakes. 

When compounded with MWCNTs and polymer, most of the flakes were covered by the resin 

but some uncoated flakes can be discerned [Figure 7(b)].  
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Figure 8(a) shows HRSEM images of the outer surfaces of the Elvax™ 260/MWCNT extruded 

tubing. The nanotubes are significantly aligned in the direction of extrusion denoted by the 

arrow; the effect of which will be discussed later in the paper. Figure 8(b) shows a cross section 

image of the tubing and MWCNTs can be seen projecting from the polymer matrix.  

 

3.4. Tensile properties of extruded ribbons Tensile properties were measured at room 

temperature on Elvax™ 260/nanofiller composites with the results shown in Tables 2a and 2b. 

The strips used for testing were cut from extruded ribbons, hence the nanofillers are somewhat 

aligned in the stress direction. The results should be viewed with care because the measurement 

of the ribbon thickness was not precise due to the uneven ribbon surfaces. In Table 2a, the testing 

was done at 0.51 cm/min, while in Table 2b the testing was carried out at 50 cm/min in order to 

reduce the time due to the high elongations. It was seen that the strength of the neat material 

increased as higher polymer strength is almost always observed for higher strain rates (or shorter 

testing times) [40, 41]. The modulus for the neat Elvax™ 260 remained the same. Where the 

data scatter was low some conclusions were drawn. For a loading level of 20 and 30 wt %, CNF 

the strengths were comparable and increased with respect to the neat material. At 40 wt% CNF 

and 20 wt% EG loadings, the strength was lower than that of the neat material. Even with a high 

data scatter, the metallized CNFs and 30 wt% Ni nanostrands exhibited reduced strength 

compared to the neat Elvax™ 260. The incorporation of Al with the carbon based nanofillers 

resulted in lower strengths and may be due to the very high filler loading. Other discernable 

strength trends could not can be made due to the large scatter in the data.  
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In general, the modulus increased with increasing nanofiller loading as expected. The exception 

to this was the metallized CNFs and Ni nanostrands which showed either very minor increase 

(20 wt% Ag-CNF), no change, or a decrease with respect to the neat material. Modification of 

EG with alkyl groups afforded a reduction in the modulus compared to neat EG at a similar wt 

loading. However, the same can not be said for the modified MWCNT and MWCNT at a 

comparable wt loading due to overlap in the data scatter. For Al containing samples there was a 

significant increase in modulus compared to Elvax™ 260 due to the high total filler loading. For 

the carbon nanofillers at a 20 wt% loading and 30 wt% Al loading the modulus decreased in the 

order of MWCNT > EG > CNF. Additionally modification of the MWCNT resulted in 

decreasing the modulus compared to the neat MWCNT at 20wt% loading of the MWCNT type 

and 30 wt% Al. The loading (up to 60 wt % net) caused a significant lowering of elongation and 

reduced strength of samples. 

 

3.5 Thermal conductivity measurements Since the structure of the nanofillers is anisotropic in 

space, the electrical and thermal properties should be different in the axial (parallel to 

nanotube/fiber axis) and transverse (perpendicular to nanotube/fiber axis) directions. There have 

been a few reports on the use of dispersed CNTs as thermally conducting fillers in polymer 

composites and certain enhancements in TC were observed [33, 42]. However, the enhanced 

values were typically below those predicted by the rule of mixtures. One reason for this is the 

probable existence of interface thermal resistance between the overlaps in the CNT passage 

leading to a rapid increase in overall thermal resistance [43]. Huang, et al. [42] proposed a 

composite structure where all the CNTs embedded in the matrix were aligned from one surface 

to the opposite side with all the CNT surfaces revealed on both surfaces. This structure would 
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lead to high TC since the CNTs form ideal thermally conducting pathways. Low thermal 

interface resistances can also be expected as the protruding tips would ensure better thermal 

contact. Alignment of nanofillers in the polymer matrix has been reported to enhance TC [33, 

44]. Based on the literature survey to date, it was decided to process samples with significant 

nanofiller alignment and measure TC both in the direction of and perpendicular to alignment 

(nanotube/fiber axis).  

 

Three types of Elvax™ 260/nanofiller samples were measured for TC. These were the extruded 

ribbon, molded samples cut perpendicular to flow direction, and extruded tubes. For the extruded 

ribbons and tubing, the TC was measured perpendicular to the direction of nanofiller alignment. 

The TC of parallel aligned nanofillers was determined from specimens cut from molded ribbons. 

In the case of samples containing only MWCNTs, CNFs, or EG another set which had random 

alignment was also examined. Table 3 denotes the values for neat Elvax™ 260 and Elvax™ 

260/nanofiller samples. The TC increased with increasing loading level of nanofillers in many 

cases and was dependent upon alignment. The first set of samples (Table 3, column 1) was for 

extruded ribbons where the TC was determined perpendicular to the nanofiller. For BN samples 

no improvement in TC was observed. For metallized CNF samples and Ni nanostrands, the 

surface was too rough and measurements were unsuccessful despite several attempts. Only the 

TC for the 20wt% Ag-CNF sample could be determined and even though the value was higher 

than the neat sample, it was lower compared to a similar loading of CNFs. The highest TC was 

observed in Al samples with a loading of 30 wt % MWCNT. The TC increased more than 3-fold 

and similar increases were observed with CNF and EG containing Al samples. In the case of 

samples without Al, the modified (electrostatic attachment) MWCNT sample had a higher TC 
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value compared to the unmodified sample having the same loading level. However, the same 

trend was not observed in the case of modified (electrostatic attachment) EG samples.  

 

The second set of samples comprised of the molded samples where the TC was measured in the 

direction of nanofiller alignment (parallel to nanofiller axis) as shown in Table 3 (column 2). The 

TC of these samples was observed to be significantly greater when compared to those 

perpendicular to alignment (column 1). It was observed that TC values of metallized CNFs and 

Ni nanostrands were higher compared to the neat polymer with 50% improvement for the Ag-

CNF samples, 67 % improvement for the Cu-CNF samples, and a 2-fold increase for the Ni-CNF 

samples. For Ni nanostrands the improvement was about 70%. Comparisons between the two 

alignment types for these samples could not be assessed due to the reason previously mentioned. 

However for the 20 wt% Ag-CNF sample, the parallel alignment exhibited a 41% improvement 

in TC compared to the perpendicular TC. For BN and Al-loaded samples, TC was observed to be 

significantly greater in the direction of alignment compared to perpendicular to alignment. The 

BN sample showed a 2.5-fold improvement in TC. MWCNT samples at 30 wt % loading 

exhibited a 9.1-fold increase in TC relative to neat Elvax™ 260 whereas CNF samples loaded at 

40 wt % showed a 12.1-fold increase. The largest TC increase, 17.1-fold, was exhibited by 40 wt 

% loading of EG samples. The data suggested that aligned nanofillers form a network to 

successfully conduct heat by perhaps enabling a more efficient phonon transfer from one filler 

particle to another. Comparing neat and modified (electrostatic attachment) MWCNTs, it was 

observed that TC showed a 10.5-fold improvement upon modification compared to a 7-fold 

improvement in the unmodified sample. However, for the modified (electrostatic attachment) EG 

sample, the improvement in TC was 14-fold compared to 17-fold for the unmodified material. 

 17



For Al samples, the MWCNT samples at 30 wt % loading exhibited a 11.8-fold increase in TC 

relative to neat Elvax™ 260, whereas the CNF samples loaded at 30 wt % showed an 11.3-fold 

increase. The 20 wt % loading of EG samples showed a 10.3-fold improvement and was slightly 

better than the TC of the 20 wt% MWCNT sample and significantly greater than the 20 wt% 

CNF sample. When compared to samples without Al particles, it was seen that the addition of Al 

significantly improved the TC of samples, by as much as 30%, as observed in the case of 30 wt 

% MWCNT. 

 

EG is a loose and porous product and its structure is basically parallel sheets, which collapse and 

deform resulting in many pores of different sizes ranging from 10 nm to10 μm. Because of the 

high expansion ratio (generally200 –300) of expanded graphite in c-axis, galleries of expanded 

graphite can be easily intercalated by suitable polymers [45]. Thermal conduction systems 

containing expanded graphite are “attached” systems in which expanded graphite particles 

interact with each other and affect the position of expanded graphite particles. Hence, the EG 

samples exhibit high TC values. 

 

TC was measured for extruded tubes as well. Extrusion of tubes was carried out with the 

MWCNT, CNF, and EG loaded and Al/nanofiller samples as these specimens showed promising 

TC values in the form of ribbons. HRSEM revealed alignment of the nanofillers along the length 

of the tubes and TC measurements were made in the direction of the tube axis. As seen in Table 

3 (column 3) for the Al loaded samples, 30 wt % loading of MWCNTs improved the TC 18.5-

fold (compared to 17-fold in samples without Al) while the same loading of CNF improved TC 

18.4-fold (compared to 13-fold in samples without Al). For 30 wt % EG samples, the 
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improvement was 24-fold (compared to 15.5-fold in samples without Al) and a sharp increase in 

TC was observed when loading levels increased from 20 to 30 wt% for Al loaded samples. 

However, the modified (electrostatic attachment) MWCNT sample did not show an increase 

compared to the unmodified MWCNTs when the samples were loaded with Al. This is in 

contrast to the samples without Al where modified (electrostatic attachment) MWCNTs 

improved the TC compared to unmodified MWCNTs. Also, MWCNTs modified by covalent 

attachment had a lower TC value compared to that with noncovalent attachment, possibly due to 

the presence of more phonon scattering centers. In general, the tubes exhibited a slightly higher 

TC compared to the same composition of molded samples when measured in the direction of 

alignment.  

 

The highest TC value for the randomly oriented samples (Table 4) was exhibited by 50 wt % 

modified (covalent) EG sample that showed a 7.6-fold increase. Again, modified (electrostatic) 

MWCNT samples showed higher TC values compared to the unmodified ones while the opposite 

was observed for modified (electrostatic) EG samples. TC results from the LMM samples proved 

conclusively that alignment of nanofillers in the polymer matrix significantly raised the TC of 

the samples. However, unaligned samples also showed a significant improvement and may be 

useful in applications when it is not possible to achieve nanoparticle alignment in a desired 

direction. 

 

3.6 Radius of curvature of tubing Disadvantages with the current LCVG are that it is heavy 

and restricts mobility due to the large number of rigid cooling lines. An analytical study 

performed by Lockheed Martin Space Operations concluded that significant improvements in 
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weight, comfort, and mobility of the LCVG could be achieved by increasing the TC of the fabric 

and the plastic cooling lines [46].  Although the incorporation of various nanofillers has 

significantly improved the TC, it is also necessary to ensure that the flexibility of the cooling 

tubes is not compromised so that they can be effectively woven into the fabric. Flexibility of the 

extruded tubes was tested by using a series of stainless steel cylinders of varying diameter. Each 

tube was wound around the cylinder of a particular diameter and the smallest diameter that the 

tube could be wound around without kinking was noted. Table 5 shows the data from these 

flexibility tests. It was observed that for Al loaded samples (Table 5a) at loading levels of 20 wt 

%, CNF, EG, MWCNT and modified MWCNT-filled Elvax™ 260 had high flexibility. At 30 wt 

% loading level only the EG samples showed kinking at the smallest diameter. These data exhibit 

a significant improvement on samples without Al (Table 5b) where only the CNF and modified 

MWCNT samples showed no kinking and the EG samples showed substantial kinking. For 

samples without Al, it was observed that at loading levels of 20 and 30 wt %, CNF filled 

Elvax™ 260 had the highest flexibility and the EG filled polymer had least. Typically the EG 

filled samples had higher TC but as evident from Figure 7, at higher loading levels they had a 

greater tendency to kink. However, alkyl-modified nanofillers yielded a significant improvement 

in flexibility as seen in the cases of the 20 wt % modified (electrostatic) MWCNT and the 40 wt 

% modified (electrostatic) EG. When 20 and 30 wt% modified (covalent) EG samples were 

tested, they exhibited greater flexibility compared to their unmodified counterparts. In all cases 

modification (covalent or electrostatic) improved the flexibility but the effect on the TC varied. It 

was possible that the alkyl groups provided a plasticizing effect.  
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4. SUMMARY 

Elvax™ 260 was mixed with various nanofillers in an effort to increase the TC of the polymer 

without significantly sacrificing flexibility.  After initial mixing, the nanocomposites were 

extruded or processed via the LMM process. HRSEM revealed significant alignment of the 

nanofillers in the flow direction in the extruded samples. TC measurements were made both in 

the direction of and perpendicular to nanofiller alignment, for tubes along their lengths as well as 

for unaligned samples. For ribbon samples it was found that the largest improvement in TC was 

achieved in the case of aligned samples when the measurement was performed in the direction of 

alignment. Unaligned samples also showed an improvement in TC and may be useful in 

applications when it is not possible to align the nanofiller. For extruded ribbons and molded 

samples, modification (electrostatic) of MWCNTs led to significant improvement in the TC 

value compared to the composite containing unmodified MWCNTs but this behavior was not 

seen for the modified (electrostatic) EG sample. However, for tubes containing modified 

(covalent or electrostatic) nanofillers, all samples showed improvement in flexibility but the 

effect on TC varied. It was also observed that the addition of Al particles to the polymer loaded 

with nanofillers improved the TC significantly without compromising flexibility.  When all four 

types of samples were compared, the extruded tubes showed the highest TC. Improvements in 

TC did not approach those expected based on a rule of mixtures and this was likely due to poor 

phonon transfer through the matrix. Finally when the TC, flexibility, and material cost were 

taken into consideration, it was concluded that compositions with 20 and 30 wt % loading of 

CNF and the modified (electrostatic) MWCNT and EG compositions produced composites of 

high TC and good flexibility. The 20 and 30 wt % loading levels of EG and 30 wt % Al powder 

exhibited excellent flexibility, high TC, and are cost effective. The use of Al powder and EG to 
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improve the TC of the cooling tubes of the LCVG subcomponents appears attractive and 

additional testing of cooling tubes comprised of these materials is warranted. 

 

5. ACKNOWLEDGEMENT 

The authors would like to thank Asbury Carbons for providing the EG and Tom Hughes and 

Applied Sciences, Inc. for providing the CNFs. Many thanks to Dr. Marcus A. Belcher, National 

Institute of Aerospace, and Dr. Emilie Siochi, NASA LaRC, for their valuable comments and 

discussions. 

 22



6. FIGURES AND TABLES 

 
Figure 1: TGA in argon of EG 3775 (pristine), electrostatic (1-dodecylbromide), and covalent (1-
dodecylamine) modification. 

 

                              
Figure 2: Ribbon of Elvax™ 260/MWCNTs              Figure 3: Plaque showing cut direction and 
                                                                                                 nanofiller alignment (arrow) 

 

              
Figure 4: Extruded tubes of Elvax™ 260/MWCNTs 
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           Figure 5(a): 10 wt % MWCNT                                 Figure 5(b): 30 wt % MWCNT 

 

           
        Figure 5(c): 30 wt % CNFs                                          Figure 5(d): 40 wt % CNF 
 

            
             Figure 5(e): 30 wt % EG                                           Figure 5(f): 40 wt % EG 

 
Figure 5: HRSEM of Elvax™ 260/nanofiller ribbon samples; arrow denotes flow direction 
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          Figure 6(a): Nickel Nanostrands   Figure 6(b): Ag-CNF 
     

             
               Figure 7(a): Al powder                          Figure 7(b): Elvax 260™ /Al powder/ MWCNT 

 
Figure 7: Elvax 260™  with Al powder 

 

             
Figure 8(a): 30 wt % MWCNT                                 Figure 8(b): 20 wt % MWCNT 

 
Figure 8: HRSEM of surfaces of Elvax™ 260/MWCNT tubing 

 25



               
  Figure 7(a): No kinks – 30 wt % MWCNT                   Figure 7(b): Kinking – 30 wt % EG 

 
Figure 7: Radius of curvature of Elvax™ 260/nanofiller tubing 
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Table 1: Melt viscosities of Elvax™ 260/nanofiller samples: 
 
 Sample Viscosity (Pa-s) 

Neat Elvax™ 260 1001 
+ 20 wt % MWCNT 1878 
+ 20 wt % mod MWCNT (electrostatic) 1562 
+ 30 wt % MWCNT 2269 
+ 20 wt % CNF 1462 
+ 30 wt % CNF 1800 
+ 40 wt % CNF 2299 
+ 20 wt % EG 1098 
+ 30 wt % EG 1276 
+ 40 wt % EG 1347 
+ 40 wt % mod EG* (electrostatic) ------ 
+ 20 wt % Ag-CNF 940 
+ 30 wt % Ag-CNF 1131 
+ 20 wt % Cu-CNF 1046 
+ 30 wt % Cu-CNF 1067 
+ 20 wt % Ni-CNF 1338 
+ 30 wt % Ni-CNF 1250 
+ 20 wt % Ni-nanostrands 922 
+ 30 wt % Ni-nanostrands 849 
+ 20 wt % BN 887 
+ 30 wt % Al + 20 wt % MWCNT 1927 
+ 30 wt % Al + 30 wt % MWCNT 2587 
+ 30 wt % Al + 20 wt % mod MWCNT 
(electrostatic) 

1907 

+ 30 wt % Al + 20 wt % CNF 1951 
+ 30 wt % Al + 30 wt % CNF 2564 
+ 30 wt % Al + 20 wt % EG 1418 
+ 30 wt % Al + 30 wt % EG 1604 

  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Shear rate: 92.5/sec, Temperature: 125 oC 
* Torque value went off scale 
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Table 2a: Mechanical properties of Elvax™ 260/nanofiller samples (0.51 cm/min): 
 
Sample Modulus, 

 

GPa 
Strength, 

MPa 
Elongation., 

% 
Neat Elvax™ 260 0.01 ±0.001 9.7 ± 0.1 856 ± 102 
+ 20 wt % MWCNT 0.07 ± 0.01 11.1 ± 2.0 586 ± 45 
+ 20 wt % mod MWCNT (electrostatic) 0.06 ± 0.01 9.0 ± 1.6 481 ± 209 
+ 30 wt % MWCNT 0.12 ± 0.01 10.2 ± 4.0 274 ± 93 
+ 20 wt % CNF 0.05 ± 0.01 11.3 ± 0.3 710 ± 54 
+ 30 wt % CNF 0.09 ± 0.01 11.9 ± 0.4 537 ± 4 
+ 40 wt % CNF 0.13 ± 0.01 8.1 ± 0.3 97 ± 20 
+ 20 wt % EG 0.06 ± 0.01 7.7 ± 1.1 430 ± 65 
+ 30 wt % EG 0.10 ± 0.01 8.9 ± 0.7 164 ± 44 
+ 40 wt % EG 0.18 ± 0.02 11.9 ± 2 77 ± 8 
+ 40 wt % mod EG (electrostatic) 0.12 ± 0.01 8.5 ± 2.4 97 ± 16 

Table 2b: Mechanical properties of Elvax™ 260/nanofiller samples (50 cm/min): 
 

Sample Modulus, 
GPa 

Strength, 
MPa 

Elongation, 
% 

Neat Elvax™ 260 0.014 ± 0.001 17.8 ± 0.2 900 ± 15 
+ 20 wt % Ag-CNF 0.017 ± 0.001 16.0 ± 0.1 814 ± 57 
+ 30 wt % Ag-CNF 0.014 ± 0.0003 14.1 ± 1.6 842 ± 45 
+ 20 wt % Cu-CNF 0.009 ± 0.003 13.2 ± 2.4 835 ± 22 
+ 30 wt % Cu-CNF 0.007 ± 0.003 11.0 ± 3.4 15.5 ± 1 
+ 20 wt % Ni-CNF 0.007 ± 0.002 10.2 ± 2.6 748 ± 59 
+ 30 wt % Ni-CNF 0.013 ± 0.001 9.2 ± 0.8 538 ± 41 
+ 20 wt % Ni-nanostrands 0.012 ± 0.003 16.2 ± 1.0 872 ± 32 
+ 30 wt % Ni-nanostrands 0.012 ± 0.003 5.8 ± 1.7 531 ± 77 
+ 20 wt % BN 0.023 ±0.003 16.7 ± 3.0 714 ± 52 
+ 30 wt % Al + 20 wt % MWCNT 0.140 ± 0.01 11.4 ± 1.3 49 ± 7 
+ 30 wt % Al + 30 wt % MWCNT * * * 
+ 30 wt % Al + 20 wt % mod MWCNT 
(electrostatic) 0.087 ± 0.008 8.9 ± 1.0 90 ± 18 
+ 30 wt % Al + 20 wt % CNF 0.065 ± 0.004 6.6 ± 2.2 149 ± 66 
+ 30 wt % Al + 30 wt % CNF * * * 
+ 30 wt % Al + 20 wt % EG 0.106 ± 0.011 8.3 ± 0.8 95 ± 30 
+ 30 wt % Al + 30 wt % EG 0.179 ± 0.035 11.7 ± 0.5 61 ± 10 
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Table 3: TC of Elvax™ 260/nanofiller samples: 
 

Sample Thermal 
Conductivity 

(perpendicular), 
W/mK 

Thermal 
Conductivity 

(parallel),  
W/mK 

Thermal 
Conductivity 

(tubes),  
W/mK 

Neat Elvax 260™ 0.311 0.324 0.26 
+ 20 wt % MWCNT 0.356 2.318 2.93 
+ 20 wt % mod MWCNT 
(electrostatic attachment); 
covalent attachment 

0.573 
 

-- 

3.395 
 

-- 

3.36 
 

1.49 
+ 30 wt % MWCNT 0.469 2.942 4.40 
+ 20 wt % CNF 0.409 1.949 3.02 
+ 30 wt % CNF 0.486 2.872 3.51 
+ 20 wt % EG 0.399 3.000 3.80 
+ 20 wt % mod EG (covalent) -- -- 2.27 
+ 30 wt % EG 0.509 4.359 4.04 
+ 30 wt % mod EG (covalent) -- -- 3.38 
+ 40 wt % EG 0.544 5.554 5.49 
+ 40 wt % mod EG (electrostatic) 0.444 4.562 5.54 
+ 20 wt % Ag-CNF 0.346 0.488 -- 
+ 30 wt % Ag-CNF -- 0.484 -- 
+ 20 wt % Cu-CNF -- 0.447 -- 
+ 30 wt % Cu-CNF -- 0.540 -- 
+ 20 wt % Ni-CNF -- 0.523 -- 
+ 30 wt % Ni-CNF -- 0.660 -- 
+ 20 wt % Ni-nanostrands -- 0.526 -- 
+ 30 wt % Ni-nanostrands -- 0.550 -- 
+ 20 wt % BN 0.311 0.866 -- 
+ 30 wt % Al + 20 wt % MWCNT 0.725 3.299 3.45 
+ 30 wt % Al + 30 wt % MWCNT 1.025 3.853 4.82 
+ 30 wt% Al + 20 wt % mod 
MWCNT (electrostatic attachment) 

0.691 2.551 2.75 

+ 30 wt % Al + 20 wt % CNF 0.734 2.533 2.78 
+ 30 wt % Al + 30 wt % CNF 0.983 3.645 4.80 
+ 30 wt % Al + 20 wt % EG 0.857 3.337 2.73 
+ 30 wt % Al + 30 wt % EG -- -- 6.24 
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Table 4: TC of Elvax™ 260/nanofiller LMM samples (unoriented): 
 

Sample Thermal Conductivity, W/mK 
Neat Elvax™ 260 0.324 
+ 20 wt % MWCNT 0.555 
+ 20 wt % mod MWCNT (electrostatic) 0.655 
+ 30 wt % MWCNT 0.705 
+ 20 wt % CNF 0.634 
+ 30 wt % CNF 0.643 
+ 20 wt % EG 0.666 
+ 30 wt % EG 0.902 
+ 40 wt % EG 1.369 
+ 40 wt % mod EG (electrostatic)  1.030 
+ 50 wt % mod EG (covalent) 2.460 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Table 5a: Radius of Curvature of Elvax™ 260/30 wt % Al/nanofiller tubing: 
 
Diameter, 
cm 

20 wt % 
MWCNT 

30 wt % 
MWCNT 

20 wt % 
CNF 

30 wt % 
CNF 

20 wt % 
EG 

30 wt % 
EG 

20 wt % 
mod 
MWCNT 

4.18 √ √ √ √ √ √ √ 
3.77 √ √ √ √ √ √ √ 
3.58 √ √ √ √ √ √ √ 
3.27 √ √ √ √ √ √ √ 
3.21 √ √ √ √ √ √ √ 
2.98 √ √ √ √ √ √ √ 
2.85 √ √ √ √ √ √ √ 
2.56 √ √ √ √ √ √ √ 
2.42 √ √ √ √ √ x √ 
 
√ - no kinking ; x – kinking 
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Table 5b: Radius of Curvature of Elvax™ 260/nanofiller tubing: 
 
Diameter, 
cm 

20 wt % 
MWCNT 

30 wt % 
MWCNT 

20 
wt% 
CNF 

30 
wt% 
CNF 

40 
wt% 
CNF 

20 
wt% 
EG 

30 
wt% 
EG 

40 
wt% 
EG 

40 
wt% 
mod 
EG 

20 wt% 
mod 
MWCNT

4.18 √ √ √ √ x √ √ x √ √ 
3.77 √ √ √ √ x √ √ x √ √ 
3.58 √ √ √ √ x √ √ x √ √ 
3.27 √ √ √ √ x √ √ x √ √ 
3.21 √ √ √ √ x √ x x √ √ 
2.98 √ x √ √ x x x x x √ 
2.85 √ x √ √ x x x x x √ 
2.56 x x √ √ x x x x x √ 
2.42 x x √ √ x x x x x √ 

 
√ - no kinking ; x – kinking 
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