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Abstract 
 

The emerging field of nanomechanics is providing a new focus in the 

study of the mechanics of materials, particularly in simulating 

fundamental atomic mechanisms involved in the initiation and evolution of 

damage. Simulating fundamental material processes using first principles 

in physics strongly motivates the formulation of computational multiscale 

methods to link macroscopic failure to the underlying atomic processes 

from which all material behavior originates. This report gives an overview 

of the state of the art of the atomistic simulation of fracture and the 

application of concurrent and sequential multiscale methods to analyze 

damage and failure mechanisms across length scales. 
 

1.0  Introduction 
 

Classical fracture mechanics is based on a continuum description of material 

domains and fracture behavior described in terms of empirical parameters (KIC, J-R 

curves, Crack Tip Opening Angle, etc.).  The emerging field of nanomechanics is 

providing a new insight into fracture processes beyond that available in continuum 

mechanics by simulating and characterizing fundamental atomic mechanisms involved in 

the initiation and evolution of damage.  These mechanisms occur at length scales on the 

order of 10-10 to 10-3 m and include those leading to the creation of traction-free surfaces 

(e.g., atomic bond breakage) and plastic defects (e.g., dislocations, twins, stacking faults). 

 

At length scales below 10-6 m, direct observations of damage processes are 

extremely difficult to obtain, thus atomistic simulations have proven to be an invaluable 

tool for understanding the fundamental processes of fracture.  Either quantum mechanics 

(ab-initio, tight-binding (TB) or density-functional theory (DFT)) methods or classical 

molecular dynamics (MD) or molecular statics (MS) methods can be used to simulate 

fundamental material processes using first principles in physics and provide an ultimate 
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understanding of deformation and fracture processes at the atomistic level.  These 

predictions of material behavior at nanometer length scales promise the development of 

physics-based “bottom-up” multiscale analyses that can aid in understanding the 

evolution of failure mechanisms across length scales. 

 

This report is intended to give an overview of the state of the art in the atomistic 

simulation of fracture and the application of concurrent and sequential multiscale 

methods to analyze damage and failure mechanisms across length scales. 
 

2.0  Atomistic Simulations of Fracture at Interfaces 
 

Atomistic simulations in material science have a continuously increasing role in 

understanding the fundamental physics-based mechanisms of material behavior.  The 

rapid growth of computational power and the continuous development of more robust and 

more efficient numerical methods have resulted in a substantial improvement in the 

accuracy and the performance of simulation models.  Two decades ago (ca. 1980s), 

atomistic simulations were mostly used in qualitative predictions of material behavior 

(e.g., phase transitions of Lennard-Jones metallic systems, Ising model calculations in 

ferromagnetic crystals, Random Walk models for polymer chains).  Currently (ca. 2008), 

it is possible to quantitatively predict many of the properties of a specific material with a 

given structural and chemical composition.  The success of the transition from qualitative 

to quantitative predictions has made possible the development of new “bottom-up” 

approaches in modeling the mechanical properties of materials starting from the basic 

atomic level interactions.  In these approaches, atomistic simulations play a key role in 

providing the basic information from the underlying atomistic processes that ultimately 

govern the macroscopic material parameters. 

 

2.1  Historical Development 
 

MD simulations are invaluable in studying fracture of interfaces, such as grain 

boundaries in metals, where continuum mechanics can not adequately represent structural 
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inhomogeneity. To illustrate the historical application of MD simulations to the study of 

fracture, selected analyses presented in the literature will be discussed. 

 

Some of the first attempts to qualitatively model the statics and dynamics of 

fracture at an atomic level date back to 1976 when Ashurst and Hoover (Ashurst and 

Hoover, 1976) used a two-dimensional triangular lattice of 512 mass points interacting 

with linear-force Hooke’s-law springs as a representative model for a crystal (Figure 1).  

The system was evolved in a molecular-dynamics (MD) sense, through integrating 

Newton’s equations of motion for each mass point.  The forces between the mass points 

were defined as linear functions of the point displacements up to a maximum strain of 

10% at which time the force was set to zero, representing bond breaking.  Even for this 

simplest crystal model, the results exhibitied a number of interesting physical 

phenomena, such as varying crack propagation velocity and widespread damage around 

the crack tip, revealing details that can not be predicted using continuum mechanics. 

 

(a)

(b)

(a)

(b)

 

Figure 1. (a) Two-dimensional triangular lattice of 512 mass points interacting with 
linear-force Hooke’s-law springs as a representative model for a crystal; (b) Image of a 
nanocrack nucleated due to atomic bond breaking in the triangular two-dimensional 
lattice.  (From Ashurst and Hoover, 1976) 
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  An early attempt to qualitatively simulate grain boundary segregation through 

crack propagation by MD was reported by Ishida et al. (1984) with the simulation of 

fracture in iron.  These were the first simulations to reveal physical mechanisms of plastic 

processes, such as dislocation nucleation, developing at the crack tip. 

 

A pioneering systematic MD analysis relating the crystallography of a large set of 

tilt and twist grain boundaries in Cu and Au to their grain boundary (GB) energy, EGB, 

and cleavage properties was performed by Wolf some years later (Wolf, 1990).  In this 

study, a large representative set of symmetric GBs in a two-dimensional space of the two 

characteristic parameters, the twist (ϕ) and tilt (θ) angle, were investigated and their 

cleavage energies, Ecl, were estimated.  Cleavage energy is defined by an extension to the 

Griffith criteria for crack growth given by 

 

 Ecl = 2γ – EGB (1) 

 

where γ is the surface energy of the GB plane.  Thus, a structure-energy correlation for all 

symmetric GBs in an fcc metal was derived and related to the inter-granular fracture 

properties.  In a related study, Yip and Wolf (Yip and Wolf, 1989) evaluated the 

atomistic concept for simulation of GB fracture.  They presented an integrated approach 

for the study of the correlation between crystallographical and chemical interfacial 

structure and the physical properties relevant to intergranular fracture.  This approach 

included the use of four related techniques: lattice statics for the determination of grain 

boundary energies; lattice dynamics for the analysis of local elastic constants; Monte 

Carlo simulation for determining solute segregation in grain boundary structure; and 

molecular dynamics simulation for modeling dynamic crack propagation.  The major 

implication of these early works is that the problem of GB fracture must be considered 

from the point of view of the structure and properties of the GB, which significantly 

affect the process of crack propagation. 
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More recent MD simulation studies have exploited various aspects of the inter-

granular crack propagation process.  These include studies on the decohesion strength of 

a GB and its dependence on impurities (Golubovic et al., 1995; Grujicic et al., 1997; 

Gumbsch, 1999); fracture stress and strain of the GB interface as a function of the atomic 

disorder due to the presence of vacancies and interstitials (Heino et al., 1998); dislocation 

emission from the crack tip as a function of the GB crystallography and structure 

(Hoagland, 1997; Cleri et al., 1999; Farkas, 2000); and crack propagation in 

nanocrystalline metals (Farkas et al., 2002; Rudd and Belak, 2002). 

 

Advances in computational technology have already made simulations of crack 

behavior in a single crystal of 108 atoms (Abraham, 1997; Zhou et al., 1997; Abraham, 

2001; Bulatov et al. 1998) or even 109 atoms (Abraham et al., 2002) possible (Figure 2).  
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Figure 2. A billion atom molecular-dynamics simulation of a crack growing in a 
single crystal of Cu.  Intensive emissions of dislocations from the crack tips are 
observed.  (From Abraham et al., 2002) 



 

Although they remain impractical for systematic studies, or for use by most practitioners, 

these large scale atomistic simulations are able to reveal many of the complex processes 

taking place at the crack tip, including dislocation emission and crack blunting in a three-

dimensional environment.  The atomistic simulations approach length scales where 

gradient theories of continuum mechanics (on the order of 0.1 μm) become valid, that is, 

where the discrete atomic structure of the matter starts to be smoothed out.  In this way, 

length scales of the atomistic simulations have begun to overlap those of continuum 

model simulations (Bulatov et al., 1998; Cleri et al., 1998), using, for example, the finite-

element method (FEM) (Xu and Needleman, 1994) or dislocation dynamics simulation 

(Noronha and Farkas, 2002) techniques.  Still, computational demands and differing 

mechanistic paradigms give rise to various issues and limitations in pure atomistic 

simulation. 

 
2.2  Problematic Issues in the Atomistic Simulations 

 

aterial so their 

accuracy is crucial  

The ability of the atomistic computer simulations to predict every atom’s position 

and velocity at any moment in time provides valuable information on fundamental 

material behavior not accessible from experiments.  However, the necessity of 

representing the material atom by atom introduces several major issues that must be 

addressed.  First is the issue of the extremely small length-scale, typically less than 100 

nm, which may make the system behavior a strong function of its boundary conditions.  

Second is the issue of the short timescale, of the order of pico and nanoseconds.  For 

example, billion atom atomistic simulations remain severely limited in time scale; even 

the most powerful current supercomputers available today (ca. 2008) can not simulate the 

system response beyond the nanosecond range.  This short timescale prevents the studies 

of low-rate or low-temperature deformation processes, such as diffusion or migration of 

defects and structural changes that take place over longer time scales.  Third is the issue 

of the accuracy of the available interatomic potential functions used in the atomistic 

simulations to define the interactions between individual atoms.  These potential 

functions define the overall physical properties of the simulated m

 for the correct representation of the system behavior.
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2.2.1  Overcoming Length Scale Limitations 

ain fields, 

including cracks, exhibit these artifacts, and may be poorly handled by PBCs. 

ses of dislocation core interactions. EBCs were also widely used for 

crack simulations.   

 

There are a number of methods suggested in the literature to overcome the length 

scale limitations.  All of them rely on defining special types of boundary conditions that 

may aid in mimicking an infinite system.  The most popular is the use of periodic 

boundary conditions (PBC). In a system modeled using PBCs (Allan and Tildesley, 

1989), atoms at the boundary are made to interact with the atoms on the opposite side of 

the system as if the system has been multiplied in space.  In this way, the boundary atoms 

are placed in the same surrounding environment as the interior atoms.  The system, while 

remaining finite in volume, effectively has no boundaries.  The PBC method works very 

well when the correlation length (the length over which one event can affect another 

event) of the system is smaller than the system size.  If this is not true, the correlation 

effects are extended beyond the system size and are periodically multiplied causing 

severe artifacts such as strong distortions of the elastic fields or correlated dynamic 

oscillations in the system.  Processes that produce long-range stress-str

 

For the case of long range elastic fields, another type of boundary condition, 

called a “flexible” or “elastic” boundary condition (EBC) has been developed (Sinclair et 

al., 1978).  In a system modeled using EBCs, the elastic strain field due to a simulated 

defect in the system, such as a dislocation or a crack, is calculated analytically under 

infinite boundary conditions.  The resulting displacements calculated at the simulated 

system boundary are applied by fixing the boundary atoms at precalculated displaced 

positions.  In this way, the boundary atoms mimic the strain field of an infinite 

continuum.  The method was commonly used for studying the structure of dislocation 

cores and the proces

 

The drawback of the EBC method is that an imposed constraint on the boundary 

atoms affects the dynamics and the thermodynamics of the system.  In addition, the 

precalculated atomic displacements are valid only for the initial configuration of the 
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system.  As the system evolves in time, these boundary displacements increasingly 

deviate from the actual stress-strain state of an infinite system.  An obvious solution to 

this problem would be to update the EBCs periodically.  This was difficult to perform in 

early simulations as the elastic field of the evolved system often became impossible to 

solve analytically.  Recently, numerical techniques have been developed to solve the 

elastic field of the evolved atomistic system and to update the displacements of the 

boundary atoms (Ohsawa and Kuramoto, 1999).  These techniques have naturally 

evolved into multiscale coupled models where atomistic and continuum approaches are 

interconnected (see Section 3).  Still, even with continuously updated displacements of 

the boundary atoms, the dynamics of the system remain artificially constrained.  Thus, 

EBC types of methods are commonly considered “static” methods. 

constrained boundaries in 

the FBC approach, while being restricted in the EBC approach. 

 

An alternative to the EBC method is to apply external forces, instead of 

prescribed displacements, to the boundary atoms so that the stress at the boundary mimics 

the stress of an infinite system.  The method is referred to as the “force (or traction) 

boundary condition” (FBC) method and was first introduced by DeCelis et al. (1983) to 

study fracture in iron and copper.  The authors reported three major advantages of the 

FBC method versus the EBC method: (i) The FBC method allows for non-linear effects 

in the system as the boundary atoms remain unconstrained in their positions, while the 

EBC method uses linear elastic displacements, which lead to artifacts in the internal 

response; (ii) the thermodynamics of the system remains unaffected (for example, finite 

temperature simulations are readily achievable); and (iii) plastic deformation, caused for 

example by dislocation glide, is easily accommodated by the un

 

As in the EBC approach, externally applied forces in the FBC approach also need 

to be periodically updated to follow the dynamics of the atomistic system.  A drawback 

of the FBC method is the difficulty in precisely calculating the applied external forces at 

the atomic level to closely reproduce the atomic interactions of an infinite system.  

Reaction forces calculated by a continuum mechanics model are too approximate, and 

spurious effects, such as surface tension forces due to broken atomic bonds, appear and 
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make the system difficult to control and stabilize numerically.  A method to eliminate 

surface tension was suggested by Cleri (Cleri, 2001) in the so-called “constant traction 

boundary conditions” molecular dynamics.  This method of “constant traction boundary 

conditions” is currently used at NASA Langley Research Center (LaRC) to develop a 

novel multiscale coupling method based on the FBC approach and will be discussed in 

ection 3.2.8. 

 

2.2.2  Overcoming Time Scale Limitations 
 

ut can only make possible the simulation 

of larger systems for the same simulation time. 

 mean that the boundaries of the 

system oving apart at a speed of only 0.1 m/s. 

S

The limitations on the length of system response time that can be simulated 

represent a serious obstacle in making useful predictions with atomistic MD simulations.  

To follow the atomic vibrations in an atomistic system, one has to integrate the atomic 

trajectories with a timestep of a few femtoseconds (10-15 s).  Even with the current state-

of-the-art gigahertz processors, the typical achievable simulation time is less than a 

nanosecond (10-9 s).  Because the integration process is a sequential procedure, parallel 

computers cannot extend the simulation time, b

 

The very short timescale requires the application of unrealistically high strain 

rates for atomistic simulations (typically in the range of 107 – 1012 s-1).  The high strain 

rates require high loads to be applied (of the order of gigapascals – 109 Pa), which are 

often similar in magnitude to the theoretical shear strength of the material considered.  In 

view of these unusually high numbers for both strain rate and magnitude of stress, it may 

seem surprising that MD simulations are successful in predicting and analyzing important 

physical processes and serving as a guiding tool for some experimental investigations.  

One of the main reasons for this success is the fact that the limitation of the short 

timescale is to a large extent compensated by the small length scale of these simulations.  

Small systems have much shorter response time, which means that the events take place 

much faster in an atomistic system than in an experiment.  For example, a tensile uniaxial 

strain rate of 107 s-1 applied to a 10 nm system would

 will be m
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The issue of the high strain rates in MD simulations was recently addressed in 

high-temperature deformation simulations of nanocrystalline Pd with grain sizes of 

approximately 10 nm (Yamakov et al., 2002).  In spite of the extremely high strain rates 

(> 107 s-1), these simulations quantitatively validated the Coble-creep equation (Coble, 

1963) describing grain boundary diffusion creep in coarse-grained materials at strain 

rates of < 10-4 s-1.  However, special care must be taken in low-temperature simulations to 

ensure that a process that might otherwise dominate the deformation behavior (that is, 

under experimental observation conditions) is not inadvertently suppressed, and hence 

overlooked, during the short time window to which MD simulations are inherently 

limited

cesses, thus extending the effective simulation 

time from nanoseconds to milliseconds. 

. 

 

There are several methods, the so-called “accelerated dynamics methods” 

(recently reviewed by Voter et al., 2002), that are being developed to permit a substantial 

increase in the time window of MD simulations.  In one of the methods, called the 

“hyperdynamics” method, the interatomic potential between atoms is carefully modified 

to decrease the activation barriers for so-called “infrequent events”, such as vacancy 

migration governing lattice diffusion processes.  Artificially decreasing the activation 

barriers dramatically increases the probability for occurrence of these “infrequent 

events”, thus accelerating the evolution of the system by several orders of magnitude. In 

another method, called “temperature-accelerated dynamics”, the temperature of the 

system is effectively increased while filtering out transitions that would not have 

occurred at the original temperature.  This method also results in a dramatic increase in 

the dynamics of the system.  In some systems, the overall acceleration may be as high as 

107 orders of magnitude for various pro

 

A conceptually different approach is the “parallel replica method” (Voter, 1998) 

in which the original system is multiplied into many identical replicas and each one is 

evolved independently until an “infrequent event”, such as an atomic jump between two 

lattice sides, takes place in one of the replicas.  Then, the system that has undergone the 
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change is multiplied and its replicas overwrite the reminder of the systems.  The process 

is repeated until the next “infrequent event” takes place in one or more of the replicas.  

This approach is considered to be the most accurate approach of all because it does not 

require any modifications of the interatomic potential or the temperature of the 

simulation, which may introduce unknown artifacts in the predicted system behavior.  

Additionally, it is well suited for use in parallel computing environments.  The trade-off 

for the high accuracy is the relatively small effective time acceleration factor, which is 

equal to the number of replicas used (usually equal to the number of available processors 

in a parallel computation, typically of the order of 102-103).  For additional time 

acceleration, the parallel replica method can be easily combined with the hyperdynamics 

method. 

 

2.2.3  Interatomic Potentials 
 

entary interactions between the 

atoms in a simple format suitable for fast computations. 

properties that an analytic potential energy function must possess in order to be effective: 

to 

The interatomic potentials are used in atomistic simulations to define the force 

interactions between individual atoms in the simulated material.  These potentials are 

analytic energy functions, which are simplified mathematical expressions that attempt to 

model the quantum mechanical interactions of electrons and nuclei.  Their use is 

generally necessitated by the desire to model systems with sizes and time scales that 

exceed available computing resources required for quantum mechanics calculations.  The 

goal of these potentials is to reproduce a variety of macroscopic physical properties of the 

simulated material, such as elastic constants, cohesive energy, melting temperature, 

vacancy formation energies, etc., by defining the elem

 
In a recent review article, Brenner (Brenner, 2000) has identified four critical 

 

1. Flexibility: A potential energy function must be sufficiently flexible 

accommodate as wide a range of fitting data of material properties as possible; 
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2. Accuracy: A potential should be able to accurately reproduce the relevant material 

properties; 

3. Transferability: A potential function should be able to describe at least 

nt, so that it can be computed many times over for all 

tomistic interactions and be fast enough to allow for the simulation of 

m that adequately describes all 

types of multi-atom bonding.  Instead, potentials are often developed for specific 

applica

 relative distanc

qualitatively, if not with quantitative accuracy, structures not included in the 

fitting data base; 

4. Computational efficiency: Evaluation of the potential should be relatively simple 

and computationally efficie

a

sufficiently large systems. 

 
Satisfying all four criteria is a challenging task, and no general recipe exists for 

this purpose.  While several standard potential functions have emerged for particular 

classes of materials, at present there is no definitive for

tions with limited universality and transferability. 

 

There are several functional forms of interatomic potentials.  Early atomistic 

simulations employed pair centrosymmetric potentials, such as the Lennard-Jones (LJ) 

potential, which are functions only of the e between two atoms.  As it was 

recognized that centrosymmetric pair potentials cannot reproduce the elastic anisotropy 

of a material (e.g., the anisotropy factor 1112442 cccH −+=  is always zero; Johnson, 1972), 

efforts were directed to incorporate three-body interaction terms or many-body 

environ

 to significantly improve the surface energy 

mental dependent terms in the analytical expressions (Brenner, 2000).   

 

Specifically for metals, the most successful form for a potential function is the 

“embedded-atom-method” (EAM) potential (Daw and Baskes, 1984), which is a 

combination of a centrosymmetric pairwise term, and a many-body term expressing a 

delocalized metallic bonding in the lattice.  The EAM potential was found to accurately 

reproduce the properties of fcc metals, but it gave unsatisfactory results for bcc, hcp and 

transition metals.  In addition, the surface energy was systematically underestimated for 

all systems.  Later developments were able
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value by increasing the interaction range of the potential and including a larger number of 

interact

lity, has been suggested 

cently by Mishin (Mishin, 2005).  At present, EAM and MEAM potentials have been 

developed for mo

trongly motivates the development of analytical 

multiscale methods to link macroscopic failure to the underlying atomic processes from 

which a

ing neighbors (Mishin et al., 1999). 

 

However, non-fcc materials remained a challenge until a modified embedded 

atom method (MEAM) was suggested (Baskes, 1992) and applied to the study of silicon 

and germanium.  The MEAM potential was successful in representing both metallic and 

covalent bonds, which made its use in simulations of heterogeneous multicomponent 

systems possible (e.g., hydrogen embrittlement of aluminum or iron).  A drawback of the 

MEAM potential is its relatively high computational complexity, especially in calculating 

the derivatives that are needed to calculate the interatomic forces.  A simpler and 

computationally more efficient form of the MEAM potential – angular dependent (ADP) 

EAM, which still preserves the original MEAM functiona

re

st pure metals and a number of binary alloys. 

 

3.0  Introduction to Multiscale Methods 
 

Modeling atomistic processes quickly becomes computationally intractable as the 

system size increases.  With current computer technology, the computational demands of 

modeling suitable domain sizes (on the order of hundreds of atoms for quantum 

mechanics-based methods, and potentially billions of atoms for classical mechanics-

based methods) and integrating the governing equations of state over sufficiently long 

time intervals, quickly reaches an upper bound for practical analyses.  In contrast, 

continuum mechanics methods such as the finite element method (FEM) provide an 

economical numerical representation of material behavior at length scales in which 

continuum assumptions apply.  This s

ll material behavior originates. 

 

Multiscale analysis is a class of systematic methodologies that have been 

developed to relate material behavior across length scales.  Multiscale analyses attempt to 
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bridge length scales by providing different physics-based models that can appropriately 

represent damage mechanisms at each scale. In these approaches, models that best 

simulate the relevant physics at lower length scales are united with models at larger 

length scales through information transfer involving averaging, homogenization, or 

perposition schemes.  The ultimate success of this approach is dependent on the 

accuracy of data li  used. 

quential 

 

linking

aterial at 

su

nkage and the intrinsic fidelity of the physical models

 

3.1  Classification of Multiscale Approaches 
 

Multiscale methods may be generally classified as either concurrent or se

(Liu et al., 2004; Park et al., 2004).  These methods are becoming valuable tools for

representing material at the atomic level (e.g. MD) and a domain representing m

a continuum level (e.g. FEM).  An intermediate region involves an interface between 

 micro- and macroscopic material behavior to atomic level processes. 

 

Concurrent multiscale analysis involves solving two or more strongly linked 

material models simultaneously.  A general schematic of concurrently coupled atomic 

and continuum regions is depicted in Figure 3.  In general, there exists a domain 

 

Figure 3. General schematic of coupled atomistic/continuum regions. 
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these two different computational procedures that typically includes an overlap region of 

“pad” atoms/nodes in which different coupling schemes are used.   

 

Some approaches, however, can consist of a combination of both sequential and 

concurrent schemes, and others, such as a recently developed procedure based on 

multiscale boundary conditions, can fall far enough outside these two designations to 

constitute an independent approach (Park and Liu, 2004). Many multiscale modeling 

strategies have been explored in recent years, and the most well established state-of-the-

art methods will be discussed. 

 
Sequential modeling typically involves some form of averaging of physical 

parameters that can serve as initial conditions or provide material parameters to another 

model which is analyzed separately.  A desirable aspect of sequential methods is that 

length and time scales between independent material models do not have to be coupled.  

The averaging or homogenization of information across length scales that is inherent to 

sequential multiscale methods is depicted in Figure 4 where a notional coupling is shown 

across domains representing characteristic features at the sub-atomic through structural 

scales. 
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   Figure 4. Hierarchy of models over length scales.  
                                 (Adapted from Oden et al., 2006)  
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3.2  Concurrent Multiscale Methods 
 

Concurrent methods are being continuously developed and enhanced by the 

materials science community.  The common approach of the concurrent methods is to 

identify a small region of the simulated system where the representation of material is 

performed at the atomic level. This atomistic region is embedded into a larger 

surrounding region where the material is represented at the continuum level.  In 

developing analytical approaches using this simulation paradigm, a primary concern has 

been the seamless coupling of forces and displacements between the different models at 

the interface between the two regions.  The inherent mismatch between computational 

frameworks – atomistic (such as molecular-dynamics or molecular-statics) and 

continuum (such as finite element or finite difference) methods – and the differing 

representation of material properties can lead to simulation difficulties. 

 

In order to achieve a successful coupling, the usual approach is to refine the 

continuum representation (the FE mesh or the finite difference grid) down to the atomic 

scale by superposing each node to an atom at the interface region (Figure 4).  In this way, 

the atomistic degrees of freedom – position and momentum of each atom – are identified 

directly with the continuum degrees of freedom – nodal displacements and their 

derivatives.  Several extensive reviews of concurrent methods have been presented in the 

literature (Liu et al., 2004; Park and Liu, 2004; Oden et al., 2006).  While numerous 

variations on basic procedures for coupling atomistic and continuum domains exist, only 

a handful have been well-developed and have gained a measure of widespread use.  A 

brief review of these methods, representing the current state-of-the-art, follows. 

 

3.2.1  The Macroscopic, Atomistic, Ab initio Dynamics Method 
 

The MAAD (Macroscopic, Atomistic, Ab initio Dynamics) procedure was 

developed to simulate fracture by combining ab initio quantum analysis, molecular 

dynamics, and finite element continuum models (Broughton et al., 1999; Abraham et al., 

2000; Shen, 2004a).  The ab initio analysis utilizes tight binding (TB) procedures to 
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predict bond breakage at the crack tip, molecular dynamics (MD) based on empirical 

force potentials to model the crack wake and surrounding atomic lattice, and a finite 

element (FE) model to simulate the far-field material.  A total Hamiltonian describes the 

dynamics of the system by combining Hamiltonians of the three separate regions and 

their interfaces.  In this approach, the FEM nodes correspond in a one-to-one manner 

with the interface atoms of the MD region.  Figure 5 shows the basic division of the 

overall simulation into regions governed by different computational methods. 

 

Two significant issues have been raised regarding the MAAD approach.  One is 

that the timestep used to integrate the governing equations in each of the three domains is 

equal to the smallest step required in any of them, causing a large increase in 

computational cost.  Another issue is the lack of damping, which may be needed to 

remove spurious reflections at the interfaces between the three regions. 

 

 
 

Figure 5. Structure of MAAD coupling.  (From Buehler, 2006) 
 

 

3.2.2  The Finite Element-Atomistic Method 
 

The FEAt (Finite Element-Atomistic) method (Kohlhoff, et al., 1991; Gumbsch 

and Beltz, 1995; Gumbsch, 1995) is a methodology similar to MAAD that links atomistic 
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representation to a continuum finite element field.  Both FEAt and MAAD utilize a 

domain of “pad” atoms in the overlapping region of the MD-FEM interface in which 

individual atoms are directly linked to finite element nodes.  These regions are shown in 

Figure 6.  An interesting feature of FEAt is that non-local elasticity theory (Kroner, 1967) 

is used in the pad region to describe the continuum representing the finite range of 

atomistic forces and can be considered as a continuation of the lattice.  These approaches 

have been successfully applied to the problem of crack propagation. 

 

  

 
 
 
 
 
 
 
 
 
 
 

Atomistic domain 

Pad region 

Continuum domain 

 
 

Figure 6. FEAt model of a crack tip in an fcc c
(From Gu

rystal.   
mbsh and Bel , 1995) tz

 
 

3.2.3  The Coarse Grained Molecular Dynamics Method 
 

A generalized formulation of the conventional FEM utilizes FEM nodes 

superposed over the entire material domain to develop another computational scheme for 

atomistic-continuum coupling called Coarse Grained Molecular Dynamics  (CGMD)     

(Rudd and Broughton, 1998, 2005).  In this approach, a MD region is defined in which 

refinement is made such that a one-to-one atom-node linkage exists.  Outside this region, 
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the finite element mesh is coarsened with individual nodes associated with many atoms.  

It is this coarse-grained (CG) finite element region that reduces the computational cost of 

representing the entire material domain.  Thus, the MD region is solved using the 

integrated equations of motion for each atom, while the kinematics of the nodal degrees 

of freedom in the CG region are obtained using the equations of continuum FEM.  A 

benefit of the CGMD method is that the interface between the MD and CG regions 

reduces spurious elastic wave scattering compared to other MD-FEM coupling methods.  

The MD and finite element CG regions are shown in Figure 7. 

 

Molecular DynamicsCoarse-Grained Molecular DynamicsCoarse-Grained

 

Coarse-Grained Molecular D      ynamics

Figure 7. Depiction of CG and MD regions in the CGMD approach.  
(From Rudd and Broughton, 2005) 
 
 
 
 
 

3.2.4  The Quasicontinuum Method 
 

The Quasicontinuum (QC) method was originally formulated to provide a direct 

coupling of an atomistic region to a continuum domain (Tadmor et al., 1996; Miller et al., 

1998; Knap and Ortiz, 2001; Miller and Tadmor, 2002).  The QC method is based on an 

atomic description of the material domain and uses deformation gradients and the 

Cauchy-Born rule (Born and Huang, 1954) for homogeneous deformations to assign 

“representative atoms” or “repatoms” to describe individual atoms or enforce kinematic 

constraints on clusters of atoms that are considered as a local continuum.  The basic 

assignment of atoms and possible partitioning of the QC region into local continuum 

domains and MD domains is shown in Figure 8.  Continuum regions utilize FEM shape 
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functions over the domain, and material properties are obtained by a summation of the 

empirical potential function of the atoms contained in these regions. Remeshing is 

intermittently performed to update the model to resolve atomic scale detail where needed 

and to reform continuum atomic subdomains where deformation gradients are small to 

minimize computational cost.  The method is commonly applied to 2-D problems and, 

because of the direct one-to-one relation between repatoms, was originally restricted to 

zero Kelvin temperature states. 

 

 Figure 8. Repatoms used to define individual atoms and local 
 continuum regions in the QC method.  (From Knap and Ortiz, 2001) 

 

 

A finite temperature QC method has subsequently been developed (Shenoy et al., 

1999; Miller and Tadmor, 2002).  The method offers a direct transition between atomistic 

and continuum fields and can effectively follow the evolution of atomistic mechanisms 

such as dislocation nucleation and crack propagation.  However, special treatments are 

required to remove spurious “ghost forces” at the interface, to mitigate free-surface 

effects, and to account for finite temperature states.  The QC method offers a general 

modeling technique and has been applied to simulate nanoindentation, fracture, 

dislocation motion, and interaction of grain boundaries. 
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3.2.5  The Bridging Domain Method 
 

Another representative concurrent coupling approach is the bridging domain 

method (Belytschko and Xiao, 2003; Xiao and Belytschko, 2004) and is based on an 

overlay approach in which MD and FEM representations are superposed in an interface 

region.  This method relaxes the strict atom-node correspondence required in many other 

methods by allowing interpolation of FEM nodal displacements to be associated with 

atomic displacements in the bridging domain.  The bridging domain with atom-finite 

element node overlap is shown in Figure 9.  The method explicitly develops coupled 

energy Hamiltonians for the atomistic and continuum regions and enforces compatibility 

in the bridging domain using Lagrange multipliers.  Dynamic behavior is simulated 

through an explicit algorithm that includes a multiple time-step scheme.  This approach 

also avoids spurious wave reflection at the MD/FEM interface without introducing 

damping or filtering procedures. 

 
Figure 9. Application of bridging domain coupling method in 2-D.  
(From Xiao and Belytschko, 2004) 

 

 

3.2.6  The Coupled Atomistic/Discrete Dislocation Method 
 

The CADD (Coupled Atomistic/Discrete Dislocation) method (Shiari et al., 2005; 

Shilkrot et al., 2002a, 2002b; Curtin and Miller, 2003; Shilkrot et al., 2004) is specifically 

designed for problems in which dislocation formation and interaction are the physical 

mechanisms of interest and persist over long distances.  The coupling at the interface is 

similar to the MAAD and FEAt methods in that it uses a pad region in which 

“handshaking” between atomic and continuum degrees of freedom occurs. CADD is 

formulated to identify the type of dislocation approaching the MD/FEM interface from 
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the atomic domain and then pass the dislocation into a surrounding discrete dislocation 

domain.  Passing the dislocation is accomplished through an ad hoc addition and 

subtraction procedure. The operation involves adding analytical equations describing the 

displacement and stress fields of the dislocation to the continuum discrete dislocation 

domain and adding the forces associated with a negative image of the dislocation into the 

atomistic domain to realign the stacking fault, thus eliminating the original dislocation.  

The passed dislocations continue to interact with the MD domain through displacement 

boundary conditions at the interface. A detection band is created near the MD-FEM 

interface to determine the type of dislocation entering the continuum (eg., an edge or 

screw dislocation).  This detection scheme is shown in Figure 10 where, for 2-D 

dislocations, active slip planes of a face centered cubic (fcc) metal are separated by 

relative angles of π/3. 

 

 
 
 
 
 
 
 
 
 

Detection Band 

Figure 10. Close-up of dislocation detection band 
near interface.  (From Shilkrot et al., 2004) 

 

The continuum is assumed linear elastic such that a superposition can be made to 

decompose the continuum into an infinite domain that contains the long-range singular 

dislocation stress fields modeled using dislocation dynamics and a finite domain region 

that contains smooth displacement fields modeled using FEM.  The decomposition of the 

coupled MD-FEM domain in CAAD is shown in Figure 11 with (I) depicting the infinite 

discrete dislocation region, (II) showing the bounded region defined by finite elements, 

and (III) illustrating the purely atomistic region.  The infinite discrete dislocation region 

represents dislocations as superposed analytic solutions. In the figure, Ω and Ω∂  

represent volumes and surface regions, respectively, and T, f, and u represent tractions, 

forces and displacements, respectively. The subscripts 0, C, A, and I designate the 

 
 

22



 

original combined system, the continuum region, the atomistic domain, and the interface, 

respectively and the ‘~’ and ‘^’ overbars represent the discrete dislocation field and the 

finite element field, respectively. 

 

This method directly addresses the representation of discrete dislocation (DD) 

plasticity in a continuum field using established DD methods (van der Geissen and 

Needleman, 1995).  Because the dislocations are represented analytically, a 

computationally demanding full atomic simulation is not required, yielding a significant 

improvement in modeling efficiency.  The transition between the atomic and continuum 

finite element domains utilizes a one-to-one node-atom linking that directly ties the 

interface atoms to the nodes in the continuum.  An extension of the atomic region into the 

continuum is assumed in which pad atoms are superposed with continuum elements and 

are connected to nodal displacements (see Figure 3).  These atoms minimize the effect of 

the free surface on the interface atoms but contribute a modeling error by introducing 

nonphysical stiffness along the interface. CADD is currently restricted to simulating 

dislocations in two dimensions. 

 

 

 

 

 

Figure 11. Decomposition of coupled MD-FEM domain using 
linear superposition.  (From Shilkrot et al., 2004) 
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3.2.7  The Equivalent Continuum Model  
 

A combined MD and Equivalent Continuum Model (ECM) method has been 

developed (Shen and Atluri, 2004b), which is similar to the Quasi-continuum methods, 

but uses the meshless local Petrov-Galerkin (MLPG) representation to link the MD and 

ECM regions.  In general, meshless methods are developed to overcome some of the 

disadvantages of the finite element method, such as the need to interpolate discontinuous 

secondary variables across interelement boundaries and the need for remeshing in large 

deformation problems.  The Cauchy-Born hypothesis is applied in the ECM region for 

determining the elastic properties of the continuum from the atomistic description of the 

system.  The ECM and MD regions are depicted in Figure 12. 

 

As shown in Figure 12, in the MD region, the solid points represent atoms, while 

in the ECM region, the solid points represent atoms and the open points represent nodes 

used in the MLPG method.  Thus, in the ECM region, atoms and nodes do not have to be 

coincident.  The ECM method has been demonstrated in one-dimensional chain models 

and in the two-dimensional analysis of a one-atom thick planar graphite sheet. 

 

 
Figure 12. Depiction of ECM and MD region in the MLPG 
approach to MD-FEM coupling.  (From Shen and Atluri, 2004b) 
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3.2.8  The Embedded Statistical Coupling Method 
 

A recently developed approach to MD-FEM coupling has been developed based 

on a restatement of the typical boundary value problem used to define a coupled domain 

(Saether et al., 2007 and Saether, et al., 2008).  The method uses statistical averaging of 

the atomistic MD domain to provide displacement interface boundary conditions to the 

surrounding continuum FEM region, which, in return, generates interface reaction forces 

applied as piecewise constant traction boundary conditions to the MD domain.  The 

coupled MD-FEM regions are depicted in Figure 13.  The two systems are 

computationally disconnected and communicate only through a continuous update of 

their boundary conditions.  With the use of statistical averages of the atomistic quantities 

to couple the two computational schemes, the developed approach is referred to as an 

embedded statistical coupling method (ESCM) as opposed to a direct coupling method 

where interface atoms and FEM nodes are individually related.  The structure of the 

ESCM approach is depicted in Figure 14 where the MD region near the FEM interface is 

partitioned into a series of Interface Volume Cells (IVCs) and Surface Volume Cells 

(SVCs) that are used to interface with the surrounding FEM nodes.  The methodology is 

inherently applicable to three-dimensional domains, avoids discretization of the 

continuum model down to atomic scales, and permits arbitrary temperatures to be 

applied. 
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Figure 13. An embedded MD region within            Figure 14. Structure of the ESCM. 
an FEM domain.  (Saether et al., 2007)                   (Saether et al., 2007) 
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3.2.9  Issues in the Development of Concurrent Methods 
 

Various modeling issues often arise that need to be addressed to formulate 

successful concurrent coupling methodologies.  These issues naturally arise in the attempt 

to join computational domains that are modeled by distinctly different representational 

frameworks of the operant physics, namely, atomistic (MD) and continuum mechanics 

(FEM) methods. 

 

In MD, atoms are influenced by the nonlocal force interactions of neighboring 

atoms, while in typical FEM methods, all quantities are local to a material point.  With 

the nonlocal interaction in the MD region and the local interaction in the continuum, 

linking the two can cause a loss of force reciprocity at the interface and a violation of 

momentum conservation due to induced “ghost” forces.  From a theoretical standpoint of 

establishing the governing equilibrium equations, it has been observed (Curtin, 2007) that 

most concurrent coupling methods that obtain equilibrium from the variation of an energy 

functional lead to some sort of spurious force generation at the interface, while those 

methods based on summing forces to zero at the interface tend to avoid these spurious 

effects. 

 

Also, inelastic material processes, such as dislocations in the MD region, must be 

transformed into continuum plasticity in the FEM domain.  This transformation is 

difficult to theorize and remains an open issue.  Additionally, a common difficulty 

involves material mismatch as higher-order material constitutive behavior included in the 

energy potentials for atomic interactions is problematic to simulate in the constitutive 

relations used in the FEM. 

 

Finally, the MD-FEM interface typically generates spurious reflections of 

phonons that must be damped out.  One possible solution involves implementation of a 

dynamic continuum to allow phonons to be transferred from the MD to the continuum 

region; however, the use of a dynamic continuum requires much smaller time steps than a 

quasi-static continuum, thereby incurring a large computational cost.  Even with a 
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dynamic continuum, a coarse FEM mesh in the region far from the interface acts as a 

filter that naturally reflects stress waves of increasing wavelengths back to the MD 

region.   

 

3.3  Sequential Multiscale Methods 
 

Sequential – or “hierarchical” - methods are typically used for modelling 

heterogeneous materials for which different constitutive laws are required at different 

length scales.  The total material deformation and stress and strain fields are typically 

decomposed into the sum of a coarse macro-component and a fine micro-component.  

The fine and coarse fields are determined through separate analyses and are summed to 

obtain the solution for the total field (Oden et al., 1999; Tadmor, et al., 2000; Clayton and 

Chung, 2006; Wagner and Liu, 2001; Hao et al., 2004). 

 

A notional flow of sequential coupling that utilizes cohesive zone models (CZMs) 

to carry information of microscopic failure mechanisms to predict damage progression at 

larger length scales is depicted in Figure 15 (from Glaessgen et al., 2005) .  In Figure 15, 

CZMs provide the critical transition between inherently atomistic and inherently 

continuum representations.  In the figure, δi represent individual displacements while λi 

represent relative displacements across a surface, i.e. . Elsewhere, the 

notation Δi is used to represent combinations of relative displacements in mixed-mode 

applications such that Δi = f (λI , λII , λIII ). These quantities are often used 

interchangeably in the literature. Because of their importance and pervasive use in 

sequential multiscale analysis, the present discussion will focus on CZM-based methods.  

bot
i

top
ii δ−δ=λ

 

3.3.1  Cohesive Zone Models 
 

Cohesive zone models were originally developed to represent complicated 

nonlinear fracture processes in ductile and quasi-brittle materials (Dugdale, 1960; 

Barenblatt, 1962).  CZMs were later developed to describe general adhesion and 

frictional slip along an interface (Maugis, 1992; Kem et al., 1998).   The CZM approach 
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is formulated on a constitutive relationship based on applied tractions and relative 

displacements   to   represent   separation   in   various   fracture   modes of two initially 

coincident surfaces.  The relative displacements associated with the creation of a new 

fracture surface for the three fundamental fracture modes are depicted in Figure 16. 
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Figure 16. Fundamental fracture modes in solids 
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In the CZM approach, the area under the CZM traction-displacement curve 

represents the work of separation to grow a crack in a particular fracture mode, i.e. the 

fracture toughness, and is given by Tvergaard and Hutchinson (1992) as 

 

  (2) ∫ Δτ=
Δ f

c dG
0

 

where Gc is the work of separation, τ is the applied traction, Δ is a general form of the 

displacement, and Δf is the critical displacement at which complete separation has 

occurred and the tractions are zero. 

 

In general, the traction-displacement relationships ( )Δτ  are obtained by 

differentiation of a potential ( )Δφφ= , which represents the free energy of decohesion.  

The selection of a potential function is typically based on recovering the assumed 

traction-displacement relationship, and particular forms are generally selected for 

analytical convenience.  In practice, various forms have been used as shown in Table 1.  

The existence of a work potential yields the work of separation regardless of the shape of 

the function. 

 

CZMs have been developed using different work potentials and different 

mathematical forms, and applied to different material systems at different length scales. 

Because of the wide range of variability in CZM formulations and applications, a broad 

survey of representative work will be presented here.  

 

Cohesive properties along an interface have typically been approximated using 

empirical data to define the CZMs (Tvergaard and Hutchinson, 1992; Costanzo and 

Allen, 1995; Camacho and Ortiz, 1996; Klein and Gao, 1998; Zavattieri et al., 2001; 

Zavattieri and Espinosa, 2003; Turon et al., 2004).  These models are frequently used in 

conjunction with the finite element method (FEM) to study fracture at macroscopic 

length scales in a wide variety of materials.    
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Wei and Anand (2004) have used a modified CZM model to study intergranular 

fracture in nanocrystalline Ni.  In their FEM simulation, the CZM-based decohesion 

element approximated both reversible and irreversible inelastic sliding-separation 

deformations at the grain boundaries prior to failure.  The parameterization of the model 

was performed by using available experimental data for stress-strain curves of 

nanocrystalline Ni with a large number of grains.  Iesulauro (2002) has also applied the 

CZM technique to simulate fatigue crack initiation in Al polycrystals in which a 

statistical representation of bulk material properties was input to the CZM. 

 

The shape of the CZM law represents the basic macro-scale behavior of the 

material near the crack (tip) under load.  Various attempts have been made to determine 

the shape based on fundamental bonding characteristics in metals (Rose et al., 1983; 

Nguyen and Ortiz, 2002).  The most commonly assumed forms of the traction-

displacement law have been expressed as exponential, bilinear, and trapezoidal functions.  

A general review of various forms of CZMs is found in Chandra et al. (2002).  Table 1 

shows a range of various CZM functions that have been presented in the literature and 

embedded into CZM elements.  The table illustrates the basic form of the CZMs, their 

key parameters, and important features. 

 

Despite all of the forms of CZMs that have been proposed, a common 

mathematical form not shown in Table 1 is a bilinear constitutive relation.  The bilinear 

form is often chosen because of its mathematical simplicity and because of its suitability 

for representing brittle and ductile fracture in metals (Yamakov, et al., 2006) and brittle 

fracture in polymeric and ceramic composite materials (Camacho and Ortiz, 1996). This 

form of CZM is shown in Figure 17. 

 

Bilinear types of cohesive zone models were used in several recent FE 

simulations of brittle fracture during multi-axial dynamic loading of ceramic 

microstructures (Zavattieri et al., 2001, 2003).   
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Table 1. Various cohesive zone models and their parameters. (From Chandra et al., 2002) 
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Figure 16. Bilinear cohesive zone model. 

 

3.3.1.1  Mixed-Mode Representation using CZMs 
 

Specific examples of mixed-mode applications of CZMs have been presented in 

the literature and are discussed here.  Among these applications, Ortiz and Pandolfi 

(1999) developed a CZM approach for simulating 3-D crack propagation and considered 

displacement jumps associated with normal opening, δn, and shear opening, δs.  They 

accounted for mode coupling by a simple device of introducing an effective opening 

displacement given by 

 22
ns δ+βδ=δ  (3) 

 

where the parameter β assigns different weights to the sliding and normal opening 

displacements.  A simple model of cohesion is then obtained by assuming that the free 

energy potential, φ, depends on δ through the effective opening displacement, i.e., 

 

 φ = φ(δ,q) (4) 
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where q is a collection of internal state variables that describe inelastic processes that 

coexist with decohesion.  A potential of the form 
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is developed where e  2.71828, σc is the maximum normal traction, and δc is a 

characteristic opening displacement.  Irreversibility is incorporated into the cohesive laws 

in the sense that the cohesive surfaces are assumed to unload linearly to the origin.  The 

resulting exponential traction-displacement curve is shown in Figure 18(a-b).  Similarly, 

a bilinear traction-displacement curve with a similar peak traction is shown in Figure 

18(c-d). 

≈

 

A 3-D CZM accounting for Mode I opening, Mode II sliding, and Mode III 

tearing has been developed (Segurado and LLorca, 2004) to study decohesion in 

composite materials consisting of elastic spheres within an elasto-plastic matrix.  The 

assumed form of the cohesive zone for normal opening is depicted in Figure 19.  An 

exponential CZM is used to represent Mode I fracture while a linear relation is used for 

simulating tangential fracture modes. Unloading after softening is assumed to follow a 

path directly back to the origin. 

 

As mentioned previously, tractions are typically derived from a single elastic 

potential.  In this case, the potential is given by 
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for Δun < Δuc, where Δun is the normal relative displacement, and Δut1 and Δut2 are the 

tangential relative displacements between the crack surfaces.  The term tc is the 

maximum normal stress carried by the interface undergoing purely normal separation, 

and Δuc is the relative normal displacement at which all the cohesive forces vanish.  The 

parameter γ specifies the ratio of normal to shear stiffness of the interface, where γ = 0 

indicates that the cohesive element only transfers normal stresses.  The normal and 

tangential tractions at the interface can be computed by taking the partial derivatives of 

the potential with respect to the corresponding relative displacements. Other examples of 

similar mixed-mode CZM formulations can be found in Li and Chandra (2003), Chandra 

and Shet (2004), Li and Siegmund (2004) 

 

 
 
Figure 18. Two assumed CZM curves. (a) Exponential traction-displacement law with (b) 
loading-unloading rule. (c) Bilinear traction-displacement law with (d) loading-unloading 
rule.  (From Ortiz and Pandolfi, 1999) 

 

 

Mixed-mode CZM models have also been determined through direct interpolation 

between individual single-mode CZMs (Turon et al., 2004).  In this approach, a traction-

displacement law is assumed in which normal and shear components of the traction and 

displacement are interpolated based on mode mixity.  The interpolated or effective CZM 
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relates a combined traction to a combined displacement jump. The effective CZM is used 

to determine a state variable that describes the damage state used to modify the stiffness 

of the cohesive zone.  An outline of the basic formulation follows. 

 

 
Figure 19. Normalized opening traction-displacement 
relation.  (From Segurado and LLorca, 2004) 

 

The interpolation of CZM components is depicted in Figure 20.  Relative 

displacement jumps between the upper and lower nodes, Δ = Δtop - Δbot, corresponding to 

the maximum traction, indicate the onset of damage.  Final failure of the cohesive zone is 

assumed after the relative displacement jump yields zero traction. 

 

 

 

 

 

 

 

 

 

 

Figure 20.  Interpolation of CZM components. 
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The interpolation of pure mode CZMs shown in Figure 20 is used to develop a 

mixed mode formulation in Turon et al. (2004).  The coupled cohesive zone model is 

defined by displacement-based onset (Δo) and final (Δf) criteria.  This model uses an 

interpolation of “normal” and “shear” CZMs to obtain a single coupled CZM for mixed 

fracture modes.  The Mode II and III displacements, δII and δIII, are combined by the root 

sum of the squares to make a combined “shear” displacement, 

 

                                                   2
III

2
II )()( δ+δ=δS                                                     (7) 

and the coupled displacement across the interface is defined by 

 

 ( )22
I Sδ+δ=Δ  (8) 

 

where  is the MacAuley bracket function, =x  ½ ( )xx + .  Mode mixity parameters 

are defined by 
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where β = 0 for pure Mode I loading, and β = 1 for pure shear loading.  The delamination 

onset criterion is defined by 
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I
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and the final criterion is derived from the B-K critical energy release rate expression 

(Benzeggagh and Kenane, 1996) given by 
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where Gtot = GI + Gshear, Gshear = GII + GIII, and η is an empirical factor used to correlate 

with experimental data.  This leads to an expression for the final opening displacement 

jump given by 
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 In the above expressions, , , and  are the individual modal displacements 

corresponding to the final criterion and are user-specified.  The , , and  are the 

individual modal displacements corresponding to delamination onset and are computed 

from the user-specified initial stiffness values, , , and , and peak tractions, , 

, and , of the CZM.  These parameters define the cohesive zone model used in 

decohesion finite elements for the continuum simulation of fracture at larger length 

scales. 
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3.3.1.2  CZM Models for Interfacial Sliding 

 

Cohesive zone models have been used to simulate shear resistance and friction 

during interfacial sliding, such as grain boundary sliding or sliding between two contact 

surfaces, in a material.  While the process of sliding may look very similar to Mode II or 

Mode III fracture (as shown in Figure 16), there are several differences between fracture 

and interfacial sliding, making sliding a fundamentally different deformation mode. 

 

First, by definition, fracture is always related to the creation of a free surface, 

while in pure sliding (at the atomic scale) there is no free surface creation.  For example, 

during GB sliding, which is a common deformation mechanism in creep deformation 

(Raj and Ashby, 1971; Yamakov et al., 2002) and governs superplasticity in metals 

(Ashby and Verrall, 1973), displacement takes place internally between atomic planes 

and does not require free surface creation. 

 

Second, while fracture is a localized process taking place at a crack tip, sliding is 

a delocalized process along the entire interface.  The associated CZM curve for fracture 

has a finite displacement jump, and its integration (Eq. 2) always gives a finite energy of 

decohesion.  In contrast, the relative tangential displacement between the two sliding 

 
 

37



 

surfaces (or sliding distance) of an interface has no limit and can be as large as the size of 

the interface.  The tractions (both normal and tangential) do not depend on the 

displacement but only on the properties of the interface and the applied load.  The 

associated work of friction is proportional to the sliding distance and, unlike the energy 

of decohesion, is not a property of the interface.  The interface dependent property is the 

friction coefficient, usually defined as the ratio between the tangential and normal 

tractions μ = τ/σn (Zavattieri and Espinosa, 2003). 

 

Third, fracture creates strong stress gradients due to the stress intensity at the 

crack tip, while interfacial sliding between smooth surfaces preserves a uniform stress 

along the sliding planes. 

 

Recently, several CZM models for interfacial sliding have been used. For 

example, Wei and Anand (2004) modeled the strength of nanocrystalline nickel using 

CZM models based on experimental data from electrodeposited nanocrystalline Ni.  In 

their model, the Mode I and Mode II cohesive zone curves were very similar, the only 

difference being that the Mode II curve was extended to twice as large of an opening 

displacement as Mode I while keeping a relatively small constant stiffness in the plastic 

region.  This resulted in prediction of a certain amount of sliding with some hardening of 

the Ni grain boundaries before debonding.   

 

Warner et al. (2006) parameterized CZMs for grain boundary sliding in copper 

using atomistic simulation data. Two major assumptions were made in the 

parameterization: (i) the shear strength τcrit of the CZM was assumed to be constant with 

shear displacement, and (ii) the shear and tensile strengths were assumed to be uncoupled 

because the authors were not able to extract any reliable data on their coupling.  

Parameterization of CZMs for sliding at contact surfaces that accounts for surface 

roughness and friction was performed by Zavattieri and Espinosa (2003) for the case of 

ceramics subjected to pressure-shear loading. 
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3.3.2  Nanoscopic Length-Scale Coupling Through CZMs 
 

When parameters that are typically used to define the CZMs are taken from bulk 

material properties (Chen et al., 1999; Iesulauro, 2002; Goyal et al., 2002; Camanho et 

al., 2003; Zhang and Paulino, 2005), they do not describe the actual physics of 

microstructural fracture.  For metals, macroscale values of strength and toughness that are 

typically input to the CZM represent the aggregate responses of thousands or millions of 

grains, grain boundaries, and defects within the specimens from which they were 

obtained. Thus, these macroscale values do not represent the unique response of a 

particular interface at which a local fracture event might occur.  

 

If the microscale predictions are to become quantitative, consideration of the local 

nanoscale properties is required.  One means of making this connection is to use the 

results of atomistic simulation to develop the constitutive relations of CZMs.  In this 

approach, CZM representation of fracture begins at nanometer length scales in which 

atomistic simulation is used to predict decohesion based on fundamental damage 

mechanisms.  These mechanisms include dislocation formation and interaction, 

interstitial void formation, and atomic diffusion.  The development of these damage 

mechanisms progress into microscale processes such as local dislocation-based plastic 

deformation and small crack formation.  Ultimately, damage progression leads to 

macroscopic failure modes such as distributed plastic yielding and the development of 

large cracks exhibiting Mode I, II, and III opening behavior. 

 

The connection of the CZM constitutive law with, albeit highly idealized, 

atomistic processes is a starting point for developing more realistic simulations that will 

eventually lead to accurate predictions of the failure properties of a large class of 

materials and microstructures, even when experimental data is not available.  This 

methodology constitutes the basis for a sequential multiscale approach to damage 

modeling. 
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The first serious attempt to extract relevant parameters for CZM decohesion laws 

from atomistic (molecular-dynamics or molecular-static) simulations was made by Gall et 

al. (2000).  Here, an atomistic model of an aluminum-silicon interface (Figure 21) was 

used to study interface debonding.  In the simulation, the system was subject to a uniaxial 

tensile strain normal to the interface until debonding occurred.  The internal stress was 

monitored and plotted as a function of the strain (Figure 22).  The extracted atomistic 

stress-strain curve showed that after an initial elastic stretching, the interface begins to 

break (at 15% strain), and the stress rapidly decreases and then starts to oscillate around 

zero due to elastic spring-back effects of the layers after separation.  Gall et al., also 

studied interface debonding for pure aluminum and pure silicon (Figure 23) and found 

that the Al-Si interface is weaker than either the Al-Al or the Si-Si interface. 

 

It is to be noted, as Gall and co-workers discuss in their paper (Gall et al., 2000), 

that such atomistically-derived stress-strain relations are not yet applicable for direct 

extraction of CZM traction-displacement relationships.  The atomistic stress-strain plots 

from these simulations represent the local debonding of an ideal atomically flat interface 

Figure 21. Atomic structure of Al-Si interface.  (From Gall et al., 2000) 
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of dimensions between 10 and 80 nm that does not include the myriad variables that 

affect the interface.  For example, the predicted debonding stress level of ~20 GPa for an 

Al-Si interface (Figure 23) is highly elevated compared to the experimental ultimate 

tensile strength of ~200 MPa for a cast Al-Si alloy where fractured and debonded Si 

particles were observed (Dighe and Gokhale, 1997; Samuel and Samuel, 1995). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Several other attempts to extract relevant parameters for CZM decohesion laws 

from molecular-dynamics or molecular-static simulations have been made by various 

groups in the last few years (Komanduri et al., 2001; Spearot et al., 2004).  In addition to 

classical MD simulations, first principles quantum-mechanics based atomistic models 

(Raynolds et al., 1996) were also used to study adhesion in an NiAl-Cr interface.  All of 

those models showed highly elevated debonding stress ranging from 15 to 50 GPa, which 

was two orders of magnitude higher than the experimentally observed strength of the 

corresponding materials. 

 
Figure 22. Atomistic derivation of a stress-strain relation during debonding of an Al-Si 
interface.  The four snapshots above and below the plot show structural changes of the 
interface at different stages of debonding at the atomic level.  (From Gall et al., 2000) 
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Figure 23. Atomistic stress-strain relations for Al-Si, Al-Al, and Si-Si 
interfaces.  (From Gall et al., 2000) 
 

 

There are various reasons for this discrepancy between atomistic simulations and 

experimental characterizations.  In addition to various idealizations related to interface 

structure, an important factor is the selection of ensemble boundary conditions.  The 

approach typically used is based on simulating the debonding of a perfect, flat interface 

under a constant tensile strain rate perpendicular to the interface.  In these references 

(Komanduri et al., 2001; Spearot et al., 2004; Raynolds et al., 2006), the system size 

varied between 4 and 80 nm, and the dynamics of the atoms was severely constrained by 

the boundary conditions, which did not allow for Poisson lateral contraction and shear 

deformation.  In addition, no stress intensity field was generated by introducing an initial 

crack to simulate a fracture response. As a result, plastic processes, such as dislocation 

slip, interface sliding, and interface diffusion, were strongly suppressed.  Consequently, 

the simulated mechanism for interface decohesion in these works reproduced an idealized 

process of atomic adhesion (strength) rather than that of fracture at the interface. 

 

A recent methodology for extracting CZMs from atomistic simulations of crack 

propagation has been developed to more accurately represent a near-crack tip 
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configuration (Yamakov et al., 2006).  The main goal of this approach was to extract and 

understand the contributions of different atomistic processes to an MD-based CZM 

decohesion law for intergranular fracture under local conditions of a propagating crack.  

The MD model used in this study was built to simulate a crack propagating under steady-

state conditions through a flat high-energy grain boundary in aluminum. 

 

A new concept of defining cohesive zone volume elements (CZVE) as an 

atomistic equivalent of CZM elements was also introduced by Yamakov et al. (2006).  In 

this concept, the CZM is a statistical representation of a large ensemble of CZVEs placed 

along the crack path during crack propagation (Figure 24).  The resulting traction-

displacement relationship is obtained as a statistical average of the behavior of a series of 

CZVEs placed along the crack path during crack propagation.  When the propagating 

crack passes through the CZVEs during the simulation, the resulting stress and opening at 

each CZVE is determined, and profiles of the stress and opening displacement along the 

crack are produced (Figure 25).  These profiles are taken at 1 ps intervals (time sufficient 

for a small, but detectable crack advance at the atomic level) during the entire process of 

crack propagation.  The data from the entire set of many such profiles are collected and 

statistically averaged to produce a CZM traction-displacement relationship (Figure 26) 

characterizing the overall process of debonding of the interface under study. While the 

method is still under development, the results to date show the dependence of the CZM 

law on different plastic processes seen at the atomic scale, such as dislocation nucleation 

and twinning at the crack tip (Yamakov et al., 2006), heat dissipation (Yamakov et al., 

2007), and dynamic fracture processes (Yamakov et al., 2005).  While the stress of 

debonding is still high (~5 GPa) compared to the experimental expectations, the analysis 

attempts to account for the local conditions of atomic bond breaking at a tip of an 

atomistically sharp crack and considers a variety of different nanoscale deformation 

processes inside the crack process zone. 
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Figure 24. MD simulation of an intergranular crack in aluminum.  Cohesive 
zone volume elements (shown in the inset) are introduced along the grain 
boundary interface to extract a statistical CZM traction-displacement 
relationship. (From Yamakov et al., 2006). 

 
 
 

 
 
Figure 25. Stress and opening profiles extracted along the crack growing 
for 123 ps in a system prestressed at 4.25 GPa hydrostatic load.  The 
corresponding snapshot of the crack is shown at the bottom.  (From 
Yamakov et al., 2006). 
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Figure 26. Surface stress vs. crack opening curves σs

yy(λ) characterizing the 
propagation of the cleavage tip for three preloads.  (From Yamakov et al., 2006). 

 

 

3.3.3  Decohesion Finite Element Formulations 
 

Once traction-displacement relationships are known via MD-based analysis or 

another means, they can be used to define effective decohesion finite elements that can 

then be placed along potential fracture interfaces in a finite element mesh.  The resulting 

element formulation is referred to herein as a “decohesion” finite element.  Finite element 

simulations can then be used to study failure evolution of material at larger length scales.  

The methodology is very generic and can be used for any interface that is subjected to 

fracture, whether the constitutive model is derived at the atomistic scale or determined at 

a larger length scale. 

 

Decohesion elements are formulated with two sets of coincident nodes defining 

two superposed surfaces that form a cohesive interface.  Shape functions appropriate to 

the order of assumed variation over the element domain govern the interpolation of 

quantities over the superposed surfaces.  These elements incorporate CZM laws to 

simulate opening failure modes and are placed between continuum finite elements to 
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predict softening and ultimate failure of the interface.  In fracture studies of metallic 

materials at the micromechanical level, CZM elements can be used to predict 

transgranular fracture, if they are placed adaptively between continuum finite elements 

within grains, or to predict intergranular fracture, if they are placed along grain 

boundaries as shown in Figure 27. 

 

 
Figure 27. Embedding decohesion elements along GBs to study microstructural fracture. 

 

The decohesion element cohesive surfaces are typically defined as being initially 

coincident.  Figure 28 shows the element surfaces under distortion.  In the figure, Ω+ and 

Ω− represent the upper and lower cohesive zone surfaces, respectively.  Ωο represents the 

interpolated middle surface of the element geometry and is used to define the local 

element coordinate system. 

 

 
Figure 28. Decohesion finite element configuration. 
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Examples of decohesion elements are shown in Figures 29 and 30.  Figure 29 

shows a 1-D 6-node decohesion element configuration.  This line element is used to 

define cohesive interfaces between 2-D continuum elements.  Although the element is 

quadratic, the Mode I opening direction is determined by computing an approximate 

linear gradient of the relative opening displacements, Δvi, over the element using only the 

end nodes.  The degree of sliding in Mode II is computed by a summation of all relative 

displacements, Δui, over the element.  The kinematics and integration scheme for this 

element may be found in Alfano and Crisfield (2001). 
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Figure 29. Relative opening displacements for Mode I and Mode II 
fracture in a 1-D 6-node quadratic decohesion element. 

 

A 2-D 12-node decohesion element is shown in Figure 30. This element is used to 

define cohesive interfaces between 3-D continuum finite elements.  The element is 

defined with respect to a local (x’, y’, z’) element coordinate system, and the kinematics 

follow a similar element formulation presented by Segurado and LLorca (2004). 

 

Various aspects of decohesion finite element formulations have been examined in 

the literature and are briefly summarized here.  Convergence difficulties have been 

encountered and have been related to numerical problems caused by sharp corners in the 

CZM function during loading and unloading cycles from which large variations in the 

tangent stiffness matrix can occur (Gao and Bower, 2004).  Another effect that can hinder 

convergence involves the type of numerical quadrature used to evaluate the element 

integrals.  It has been found that Gaussian quadrature tends to link kinematic degrees of 
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freedom across the element, which affects the eigenmodes of the deformation states, and 

causes high traction gradients across the element domain.  An improvement has been 

found in using Newton-Cotes methods, which act to uncouple the eigenmodes, thereby 

resulting in smoother traction profiles and improvement of convergence (Schellekens and 

de Borst, 1993). 
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Figure 30. Relative opening displacements for Mode I and 
Mode II fracture in a 2-D 12-node quadratic decohesion 

 

 

Additional numerical aspects in the use of decohesion elements exist. To obtain 

accurate solutions, bounds on element size have been presented (Allen and Searcy, 2000; 

Tomar et al., 2004; Turon et al., 2007), and augmented solution schemes that include 

viscous damping to improve convergence characteristics have been advanced (Gao and 

de Borst, 1993). The initial slope of the traction-displacement law dictates the magnitude 

of the stiffness penalty constraint and, for macroscopic applications, follows the general 

rule that this parameter should be chosen large enough to enforce coincidence of nodes at 

the cohesive surface but not so large as to cause numerical ill-conditioning of the global 

stiffness matrix.  Using a value that is less than optimally-large introduces a spurious 

compliance into the model that can alter results, particularly in models where decohesion 

elements are placed between many continuum elements to avoid an a priori assumption 

of where a dominant crack path will be generated.  As the length scale decreases such 
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that the thickness of the cohesive zone can no longer be assumed infinitesimal, the initial 

stiffness is no longer a mathematical penalty parameter used to enforce a strict constraint 

on relative displacements but becomes increasingly reduced to represent the actual 

elasticity of the finite thickness cohesive zone. 

 

4.0  Summary 
 

 This report has presented an overview of the current state of the art for 

understanding and predicting fracture in polycrystalline metals using principles from the 

emerging field of nanomechanics. Within this new realm in the study of the mechanics of 

materials, physics-based modeling of fracture involves the application of molecular 

dynamics simulation and methods of multiscale analysis. The combination of these 

computational frameworks, by linking damage mechanisms across length scales, 

promises future predictions of macroscopic material failure based on fundamental 

atomistic processes from which all material behavior originates.  

 

Atomistic simulation, often in the form of molecular dynamics, permits a direct 

simulation of atomistic mechanisms that cause fracture at the nanoscale and that 

ultimately dictate the overall strength and toughness of a material.  These mechanisms 

include the stretching and breaking of the interatomic bonds and are often accompanied 

by atomic rearrangements that cause plastic deformation.  However, for small submicron 

material domains requiring a billion atom simulation, the time scale remains severely 

limited; even the most powerful current supercomputers available today (ca. 2008) can 

not simulate the system response beyond the nanosecond range. In addition, the very 

short time scale requires the application of unrealistically high strain rates for atomistic 

simulations (typically in the range of 107 – 1012 s-1). Therefore, because of their extreme 

computational expense, molecular dynamics simulation is not well suited to modelling 

large material domains.  This limitation has necessitated the development of multiscale 

modeling methods to link atomistic simulation within a more computationally efficient 

framework. 
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Multiscale modeling methods that join two or more computational paradigms are 

often characterized as either concurrent or sequential.  Concurrent multiscale modeling 

methods can be used to link molecular dynamics and a continuum mechanics method 

(e.g., finite element analysis) as a single simultaneously executed analysis.  Often, the 

molecular dynamics simulation is embedded in a much larger finite element analysis.  In 

this application, molecular dynamics is used to determine underlying physical processes 

and finite element analysis is used to provide appropriate far-field boundary conditions.   

  

Sequential multiscale modeling often uses cohesive zone models to provide the 

computational bridge between length scales. Cohesive zone models provide a 

numerically efficient means of representing a broad range of atomic-level mechanisms 

(i.e. dislocation formation and void formation) and configurations (i.e. grain boundaries) 

at length scales suitable for continuum mechanics approximations.  Typically, the 

constitutive relationships used in cohesive zone models are approximated using 

macroscopically derived material properties.  However, one new approach for the 

determination of the cohesive zone models extracts the constitutive relationship from 

molecular dynamics simulation. This methodology theoretically eliminates empirical 

descriptions of material degradation by deriving atomistically-based constitutive relations 

of material strength that can be applied at larger length scales to study the failure of 

polycrystal microstructures.  

 

The combined methods of molecular dynamic modeling and multiscale analysis 

techniques permit damage processes to be linked across length scales to ultimately 

predict macroscopic material behavior from first principles. As analysis methods 

improve, more realistic simulations will lead to better predictions of the failure properties 

of a large class of materials and microstructures, even when experimental data is not 

available or is difficult to obtain.  
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