Lunar Analog
Session Outline
HHC Infrastructure Gaps

Gaps: Can partial gravity be simulated on Earth?

- How does 1/6-g or 3/8-g influence CM?

Monitoring Bone Health by DLS in Lunar Missions (Cavanagh)

- Smart Pill (Putcha NRA)

- CV Alterations during Lunar Missions* (Platts NRA)

- Lunar EVA Study* (Directed Study)

- Lunar Analog development* (Directed Study)

- Thermoregulation and CV Response during Lunar Missions (Keller NRA)

- Integrated Musculoskeletal CM for Lunar Missions (Lang)
Concept

- Development of a ground-based lunar analog is necessary as NASA prepares to return to the Moon.

- Relied on Digital Astronaut to:
 - Validate the angle needed for expected changes in bone
 - 9.5° head up tilt
 - Determine what adjustments are required to appropriately model predicted plasma volume changes
 - Compression stockings
Digital Astronaut
Validation of 9.5° Head Up Tilt

- Demonstrate that 9.5° head up tilt provides 1/6g in the standing position
Lunar Analog Feasibility Study

- Initial study to assess subject comfort and tolerance of the lunar bed and stockings

- Subjects
 - 5 Cleveland Clinic
 - 3 JSC/UTMB

- 11-day study
 - 3 days pre-bed rest with
 - 6 days in bed
 - 2 days post bed rest rehabilitation
Lunar Analog Feasibility Study

- Subjects provided isocaloric diet
- Alternated between periods of sitting and standing
 - 65% sitting
 - 35% standing
- Subjects tolerated the lunar bed well.
Lunar Analog Feasibility Study

- Jobst® Stocking Evaluation – a number of different stocking configurations were tested to determine optimal comfort for subjects.
 - Thigh high, off the shelf, closed toe 30-40 mmHg, (~18 mmHg ave)
 - Thigh high, custom fit, closed toe, 40 mmHg (~18 mmHg ave)
 - Thigh high, custom fit, Elvarex fabric, open toe, 36-46 mmHg (~18 mmHg ave)
Lunar Analog Feasibility Study

- **Knee High Stockings**
 - Knee high, custom fit, Elvarex fabric, open toe, 36-46 mmHg (~18 mmHg ave)

- **All stocking configurations** were evaluated for
 - foot and toe numbness, tingling and pain
 - Knee irritation and pain

- **Best combination of characteristics**
 - Knee high, custom fit, Elvarex fabric, closed toe, 25-32 mmHg (~12 mmHg ave)
Preliminary Data

- Data from 1st 5 subjects at Cleveland Clinic
Plasma Volume

- Predicted 6% PV loss on moon
- 10° HUT w/o stockings predicts PV *gain* (left)
- 10° HUT w/ stockings predicts PV *loss* (right)
- Actual loss during LAFS **13%**.
- Due to:
 - Lack of Diet Stabilization?
 - Magnitude of Compression?
Change in Segmental Fluid Volume during Short and Long Radius Centrifugation

- **Volume (mL)**
- **Thigh - Short Radius**
- **Thigh - Long Radius**
- **Calf - Short Radius**
- **Calf - Long Radius**
Selection of stockings

- Knee high (Below the knee) compression stockings are frequently prescribed to prevent DVT. One randomized trial with 223 subjects showed a 10% rate of asymptomatic DVT in control subjects and 0 cases of DVT following long-haul airflights.

- Several meta-analyses have been conducted showing the efficacy of compression stockings for preventing DVT in a number of different clinical scenarios. When knee high were compared to thigh high, a conclusion could not be drawn on which were superior at preventing DVT due to the low numbers, but one review recommends knee high due to the greater comfort.

Pre-Pilot Study

- Validation of Lunar bed rest model for the cardiovascular system
 - Knee high, custom fit, Elvarex fabric, closed toe, 25-32 mmHg (~12 mmHg ave)
 - 8 subjects
 - 14-day pre-bed rest diet stabilization
 - 6 days 9.5° head up tilt bed rest
 - 2 days post bed rest rehabilitation
 - Plasma Volume measures to accurately assess magnitude and direction
Lunar Analog Pilot Study

- Examination of the Lunar bed rest model over long-duration
 - 14 pre-bed rest diet stabilization
 - 60 days 9.5° head up tilt bed rest
 - 14 days post bed rest rehabilitation
 - Standard conditions
 - Standard measures
 - Model verification using Digital Astronaut
Bed Design for Lunar Analog Pilot

Adjustable Foot Support
Slider Plate Assembly

Floor-mounted force plate serves as a seat.

Scissor jack to adjust force plate operated by subject.