Lunar Analog
Session Outline
HHC Infrastructure Gaps

Gaps: Can partial gravity be simulated on Earth?
How does 1/6-g or 3/8-g influence CM?

- Monitoring Bone Health by DLS in Lunar Missions (Cavanagh)
- Smart Pill (Putcha NRA)
- CV Alterations during Lunar Missions* (Platts NRA)
- Lunar EVA Study* (Directed Study)
- Lunar Analog development* (Directed Study)
- Thermoregulation and CV Response during Lunar Missions (Keller NRA)
- Integrated Musculoskeletal CM for Lunar Missions (Lang)

KEY
- Ground Study
- Flight Study
- Pre-flight Preparation
- Data Analysis
- Add-on

These studies are listed multiple times to answer several gaps
Development of a ground-based lunar analog is necessary as NASA prepares to return to the Moon.

Relied on Digital Astronaut to:

- Validate the angle needed for expected changes in bone
 - 9.5° head up tilt
- Determine what adjustments are required to appropriately model predicted plasma volume changes
 - Compression stockings
Digital Astronaut
Bed Design
Validation of 9.5° Head Up Tilt

- Demonstrate that 9.5° head up tilt provides 1/6 g in the standing position
Lunar Analog Feasibility Study

- Initial study to assess subject comfort and tolerance of the lunar bed and stockings

- Subjects
 - 5 Cleveland Clinic
 - 3 JSC/UTMB

- 11-day study
 - 3 days pre-bed rest with
 - 6 days in bed
 - 2 days post bed rest rehabilitation
Lunar Analog Feasibility Study

- Subjects provided isocaloric diet
- Alternated between periods of sitting and standing
 - 65% sitting
 - 35% standing
- Subjects tolerated the lunar bed well.
Lunar Analog Feasibility Study

- **Jobst® Stocking Evaluation** – a number of different stocking configurations were tested to determine optimal comfort for subjects.

 - Thigh high, off the shelf, closed toe 30-40 mmHg, (~18 mmHg ave)
 - Thigh high, custom fit, closed toe, 40 mmHg (~18 mmHg ave)
 - Thigh high, custom fit, Elvarex fabric, open toe, 36-46 mmHg (~18 mmHg ave)
Lunar Analog Feasibility Study

- **Knee High Stockings**
 - Knee high, custom fit, Elvarex fabric, open toe, 36-46 mmHg (~18 mmHg ave)

- **All stocking configurations**
 were evaluated for
 - foot and toe numbness, tingling and pain
 - Knee irritation and pain

- **Best combination of characteristics**
 - Knee high, custom fit, Elvarex fabric, closed toe, 25-32 mmHg (~12mmHg ave)
Preliminary Data

- Data from 1st 5 subjects at Cleveland Clinic
- Predicted 6% PV loss on moon
- 10° HUT w/o stockings predicts PV gain (left)
- 10° HUT w/ stockings predicts PV loss (right)
- Actual loss during LAFS 13%.
- Due to:
 - Lack of Diet Stabilization?
 - Magnitude of Compression?
Selection of stockings

- Knee high (below the knee) compression stockings are frequently prescribed to prevent DVT. One randomized trial with 223 subjects showed a 10% rate of asymptomatic DVT in control subjects and 0 cases of DVT following long-haul airflights.

- Several meta-analyses have been conducted showing the efficacy of compression stockings for preventing DVT in a number of different clinical scenarios. When knee high were compared to thigh high, a conclusion could not be drawn on which were superior at preventing DVT due to the low numbers, but one review recommends knee high due to the greater comfort.

Pre-Pilot Study

- Validation of Lunar bed rest model for the cardiovascular system
 - Knee high, custom fit, Elvarex fabric, closed toe, 25-32 mmHg (~12 mmHg ave)
 - 8 subjects
 - 14-day pre-bed rest diet stabilization
 - 6 days 9.5° head up tilt bed rest
 - 2 days post bed rest rehabilitation
 - Plasma Volume measures to accurately assess magnitude and direction
Lunar Analog Pilot Study

- Examination of the Lunar bed rest model over long-duration
 - 14 pre-bed rest diet stabilization
 - 60 days 9.5° head up tilt bed rest
 - 14 days post bed rest rehabilitation
 - Standard conditions
 - Standard measures
 - Model verification using Digital Astronaut
Bed Design for Lunar Analog Pilot

- Adjustable Foot Support
- Slider Plate Assembly
- Floor-mounted force plate serves as a seat.
- Scissor jack to adjust force plate operated by subject