The GuideView System for Interactive, Structured, Multi-modal Delivery of Clinical Guidelines

M. Sriram Iyengar, Jose Florez-Arango, MD, Carlos Andres Garcia, MD

*School of Health Information Sciences, Univ of Texas, Houston. Medical Informatics and Health Care Systems, NASA Johnson Space Center

Main Features of GuideView

- **Complex features are broken down into simple steps in a process flow**
- **Instructions for each step are presented in multi-modal modes**
- **Text**
- **Voice and sound**
- **Images**
- **Full-motion video**
- **Live action (with annotations)**
- **Animation**
- **GuideView interacts with the user in two modes**
- **Mouse clicks**
- **Video Navigation**: both hands can be free to assist the patient
- **GuideView interacts with medical sensors using Bluetooth (wireless) or wired connections**
- **Automatically translates guideline pathways depending on data values received**
- **Saves time and improves accuracy**
- **GuideView is a rich platform with consistent look and feel**
- **Over the web on Windows and Macintosh clients running Internet Explorer**
- **Stand-alone on Windows computers**
- **On Windows Mobile PDAs (Pocket PCs)**

GuideView User Interface

- **User interface identical to the desktop version**
- **New assistance for the user**
- **Dx and Ty of red eye problems**
- **Procedure steps**
- **History with active links**
- **Navigation tools**
- **Voice**

GuideView Design Goals

- **Reduce Complexity**
- **Each process step is a simple task that can be completed even by those with minimal medical training**
- **Decrease Cognitive Load**
- **At each step only a small (5 max) choices to select next step**
- **Support backtracking**
- **No choice is final. Can always return easily to a previous step and follow different path**
- **Enable repetition**
- **Provides instructions for any step as often as desired**
- **Support modularity and re-usability of guidelines**
- **Guidelines can be developed in small modules**
- **Modules can be chained and nested as needed to create complex protocols**
- **Enhance learning by providing multiple instructional modes**
- **Each step is presented using multiple media, text, voice and visual aids**
- **Look and feel as similar as possible over multiple platforms**
- **Achieves the Flash technology from Macromedia**
- **GuideView may need to be used by mobile professionals, either within a space habitat or terrestrially**
- **Separation of content and presentation**
- **Content saved as XML**

GuideView supports mobility

- **User interface identical to the desktop version**
- **Full-motion video and voice output available**
- **Wizard-like and form-factor very desirable for mobile professionals and astronauts**
- **Voice navigation is being developed**

GuideView Author

- **Used to develop clinical guidelines and save them in a form capable of being played back using GuideView**
- **Up to 5 branch points at each node**
- **Path and zoom functions for navigating across complex, lengthy protocols**
- **Supports insertion of text, voice, pictures and video**
- **Content saved as XML**
- **Cross-platform capability**
- **Can create GuideView-compatible protocols over the web**
- **A graphical editor for creating, editing, and updating GuideView process flows**

Usability Study

- **A usability study was performed at the Human Patient Simulation Laboratory, WYLE Life Sciences, Houston, TX**
- **Ten subjects used GuideView on a laptop to perform two procedures: Heimlich maneuver and insertion of ILMN**
- **A usability questionnaire and the NASA Task Load Index** were administered immediately after completion

Future Work

- **Interface GuideView with electronic health record systems**
- **Improve voice navigation**
- **Add an expert mode for use by physicians**
- **Develop extended module library with management and search features**
- **Enable connectivity with medical devices and sensors**
- **Explore engineering applications for GuideView technology**

References

3. Contact

 M. Sriram Iyengar, PhD
 rismanr@uth.tmc.edu
 NASA JSC, School of Health Information Sciences, University of Texas Health Science Center at Houston, Houston, TX

 Medical Informatics and Health Care Systems, NASA Johnson Space Center, Houston, TX

 Acknowledgments

 The authors thank Kathy Johnson-Throop, PhD, Jack W Smith, Jr, MD, PhD, John Hines, and Glenn Holt for support, advice, and encouragement.

 Very special thanks to Tyler Carmuth, WYLE Life Sciences, Houston, TX, for generating medical and multi-modal content used extensively in the prototype development.