Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter
Glenn Research Center, Cleveland, Ohio

Dorothy Lukco
ASRC Aerospace Corporation, Cleveland, Ohio

Chung-Chiun Liu
Case Western Reserve University, Cleveland, Ohio

Benjamin J. Ward
Makel Engineering Inc., Chico, California

December 2008
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 301–621–0134

- Telephone the NASA STI Help Desk at 301–621–0390

- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter
Glenn Research Center, Cleveland, Ohio

Dorothy Lukco
ASRC Aerospace Corporation, Cleveland, Ohio

Chung-Chiun Liu
Case Western Reserve University, Cleveland, Ohio

Benjamin J. Ward
Makel Engineering Inc., Chico, California

National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

December 2008
Acknowledgments

The assistance of Drago Androjna (Retired from Sierra Labo, Inc.) in gas testing and the support of NASA Aviation Safety Program, and the Space Fire Detection and Integrated Vehicle Health Monitoring Projects are greatly appreciated.

Level of Review: This material has been technically reviewed by technical management.
Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Jennifer C. Xu and Gary W. Hunter
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Dorothy Lukco
ASRC Aerospace Corporation
Glenn Research Center
Cleveland, Ohio 44135

Chung-Chiun Liu
Case Western Reserve University
Cleveland, Ohio 44106

Benjamin J. Ward
Makel Engineering, Inc.
Chico, California 95973

Abstract

Carbon dioxide (CO₂) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO₂ sensing materials exist due to the high chemical stability of CO₂. In this work, a novel CO₂ microsensor based on nanocrystalline tin oxide (SnO₂) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO₂ based CO₂ microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO₂ =1: 8 (molar ratio), the resistance of the sensor has a linear response to CO₂ concentrations for the range of 1 to 4% CO₂ in air at 450 °C. This approach has demonstrated the use of SnO₂, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

Introduction

Carbon dioxide (CO₂) gas is one of the most challenging gas species to detect due to its high chemical stability. However, there is a significant need for CO₂ sensors for aerospace and commercial applications, especially for low powered microsensors. These applications include low-false-alarm fire detection which detect chemical species indicative of a fire (e.g., CO and CO₂) (ref. 1), as well as for environmental and emissions monitoring (ref. 2). Due to the stable chemical properties of CO₂ gas, only a limited number of CO₂ sensing materials exist. Most existing CO₂ sensors are bulky in size and involve complicated fabrication processes (ref. 3 and 4). The high power consumption for the bulky CO₂ sensor is also a significant issue which needs to be addressed.

While actively working on miniaturizing CO₂ sensors using existing solid electrolyte sensing material (refs. 2, 5, and 6), we have also been aggressively exploring new CO₂ sensing materials. A novel CO₂ sensing material, nanocrystalline tin oxide (SnO₂) doped with copper oxide (CuO) has been successfully demonstrated for CO₂ detection. Contrary to traditional electrochemical-based CO₂ sensors, which involve a multiple-electrolyte structure (refs. 2 to 6) and are hard to miniaturize, the new sensing material is a solid-state resistor-based CuO and SnO₂ mixture allowing straightforward fabrication of the CO₂ microsensor.

Experimental

Sensor Fabrication

The CuO-SnO₂ nanomaterial-based CO₂ microsensors were fabricated utilizing the following process: First, platinum interdigitated electrodes (30 μm wide fingers and spacing) were microfabricated on a quartz substrate (250 μm in thickness) using photolithography and thin-film sputtering. Then, SnO₂ sol gel was synthesized through a water-based sol-gel process using tin chloride (SnCl₄) as a precursor to react with ammonium hydroxide (NH₄OH) (ref. 7). Freshly deposited CuO was produced by reacting copper chloride (CuCl₂) with potassium hydroxide (KOH), followed by removal of excess potassium and chloride ions in the solution. The SnO₂ sol gel was then homogeneously mixed with freshly deposited CuO in different ratios. The mixture was drop deposited on the interdigitated electrode area (1.10 by 0.99 mm). Finally, the sensors were heated at 700 °C for 2 hr to convert the doped sol-gel mixture into a nanocrystalline sensing material, with particle diameters smaller than 20 nm.
solid electrolyte CO₂ sensor. It can be integrated into a sensor structure and in measurement approach from the traditional resistor-type sensor, which is fundamentally different both in air) versus CO₂ concentrations from 1 to 4% in air.

Sensor resistance change (compared to the value measured in (N₂), air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and gases. The sensor resistance was measured in air, nitrogen (N₂) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Sensor Testing

The CO₂ microsensors fabricated with different CuO/SnO₂ ratios were tested in a chamber on a heating stage and connected via probes to resistance meters. They were operated by measuring the electrical resistances of the sensor in various gases at a flow rate of 4000 sccm at a temperature of 450 °C.

Results and Discussion

Table 1 lists the CuO doping levels in SnO₂ as analyzed by X-Ray Photoelectron Spectroscopy (XPS), and the corresponding response of these materials to CO₂ gases. Results showed that only at a molar ratio of CuO: SnO₂ = 1: 8, does the microsensor respond to CO₂ at 450 °C.

Table 1.—XPS Analysis of CuO/SnO₂ Nanomaterials and Their Responses to CO₂

<table>
<thead>
<tr>
<th>Sample number</th>
<th>CuO: SnO₂</th>
<th>Response to CO₂</th>
<th>CO₂ Concentration in Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1: 25.7</td>
<td>No</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>1: 15.4</td>
<td>No</td>
<td>2%</td>
</tr>
<tr>
<td>3</td>
<td>1: 8.0</td>
<td>Yes</td>
<td>3%</td>
</tr>
<tr>
<td>4</td>
<td>1: 3.4</td>
<td>No</td>
<td>4%</td>
</tr>
<tr>
<td>5</td>
<td>1: 1.6</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Results from table 1, figures 2 and 3 show that linear responses to CO₂ from 1 to 4% in air were achieved at a doping level of CuO: SnO₂ = 1: 8 in molar ratio. No CO₂ response was seen at other doping levels. The baseline of the sensor drifted slightly in air. These observations are being further investigated.

The CuO-SnO₂ nanomaterial-based CO₂ microsensor is a resistor-type sensor, which is fundamentally different both in structure and in measurement approach from the traditional solid electrolyte CO₂ sensor. It can be integrated into a sensor array to provide signals for aerospace and commercial applications such as fire detection, emission and environmental monitoring. This innovation is also scientifically significant because SnO₂ is an n-type sensing material that has been widely used for detecting reducing gases such as carbon monoxide, hydrogen, and hydrocarbons (ref. 8). This demonstration is the first time to our knowledge that microsensor (CuO: SnO₂ = 1: 8 in molar ratio) tested in air, N₂, air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Response to CO₂

Results from table 1, figures 2 and 3 show that linear responses to CO₂ from 1 to 4% in air were achieved at a doping level of CuO: SnO₂ = 1: 8 in molar ratio. No CO₂ response was seen at other doping levels. The baseline of the sensor drifted slightly in air. These observations are being further investigated.

The CuO-SnO₂ nanomaterial-based CO₂ microsensor is a resistor-type sensor, which is fundamentally different both in structure and in measurement approach from the traditional solid electrolyte CO₂ sensor. It can be integrated into a sensor array to provide signals for aerospace and commercial applications such as fire detection, emission and environmental monitoring. This innovation is also scientifically significant because SnO₂ is an n-type sensing material that has been widely used for detecting reducing gases such as carbon monoxide, hydrogen, and hydrocarbons (ref. 8). This demonstration is the first time to our knowledge that microsensor (CuO: SnO₂ = 1: 8 in molar ratio) tested in air, N₂, air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Figure 2 shows the testing results of carbon dioxide microsensors (CuO: SnO₂ = 1: 8 in molar ratio) in different gases. The sensor resistance was measured in air, nitrogen (N₂), air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4% at 450 °C. Figure 3 is a linear fit of sensor resistance change (compared to the value measured in air) versus CO₂ concentrations from 1 to 4% in air.

Results from table 1, figures 2 and 3 show that linear responses to CO₂ from 1 to 4% in air were achieved at a doping level of CuO: SnO₂ = 1: 8 in molar ratio. No CO₂ response was seen at other doping levels. The baseline of the sensor drifted slightly in air. These observations are being further investigated.

The CuO-SnO₂ nanomaterial-based CO₂ microsensor is a resistor-type sensor, which is fundamentally different both in structure and in measurement approach from the traditional solid electrolyte CO₂ sensor. It can be integrated into a sensor array to provide signals for aerospace and commercial applications such as fire detection, emission and environmental monitoring. This innovation is also scientifically significant because SnO₂ is an n-type sensing material that has been widely used for detecting reducing gases such as carbon monoxide, hydrogen, and hydrocarbons (ref. 8). This demonstration is the first time to our knowledge that microsensor (CuO: SnO₂ = 1: 8 in molar ratio) tested in air, N₂, air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Figure 2—Resistances of CuO-SnO₂ based microsensor (CuO: SnO₂ = 1: 8 in molar ratio) in different gases such as carbon monoxide, hydrogen, and hydrocarbons (ref. 8). This demonstration is the first time to our knowledge that microsensor (CuO: SnO₂ = 1: 8 in molar ratio) tested in air, N₂, air (50%)/N₂ (50%), CO₂ (2%)/air (48%)/N₂ (50%) and CO₂ in air from 1 to 4%, with a repeat measurement at 4% CO₂.

Figure 3.—Linear fitting of sensor resistance change versus CO₂ concentration tested from 1 to 4% CO₂ gases in air.
References

Title: Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide

Authors: Xu, Jennifer, C.; Hunter, Gary, W.; Lukco, Dorothy; Liu, Chung-Chiun; Ward, Benjamin, J.

Abstract:
Carbon dioxide (CO\textsubscript{2}) is one of the major indicators of fire and therefore its measurement is very important for low-false-alarm fire detection and emissions monitoring. However, only a limited number of CO\textsubscript{2} sensing materials exist due to the high chemical stability of CO\textsubscript{2}. In this work, a novel CO\textsubscript{2} microsensor based on nanocrystalline tin oxide (SnO\textsubscript{2}) doped with copper oxide (CuO) has been successfully demonstrated. The CuO-SnO\textsubscript{2} based CO\textsubscript{2} microsensors are fabricated by means of microelectromechanical systems (MEMS) technology and sol-gel nanomaterial-synthesis processes. At a doping level of CuO: SnO\textsubscript{2} = 1: 8 (molar ratio), the resistance of the sensor has a linear response to CO\textsubscript{2} concentrations for the range of 1 to 4 percent CO\textsubscript{2} in air at 450 °C. This approach has demonstrated the use of SnO\textsubscript{2}, typically used for the detection of reducing gases, in the detection of an oxidizing gas.

Subject Terms: Carbon dioxide (CO\textsubscript{2}); Gas; Fire detection; Low-false-alarm; Copper oxide (CuO); Microsensors; Nanomaterial; Tin oxide (SnO\textsubscript{2}); Nanocrystalline; MEMS; Emission monitoring; Environmental monitoring