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Abstract 

Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to 
metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on 
advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived 
matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints 
revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the 
composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C 
composites was observed. The chemical and thermomechanical compatibility between C/C and metals at 
elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C 
joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-
metal brazed joints may be promising for lightweight thermal management applications. 
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• Introduction and Background
• Technical Challenges

– Wetting and Reactions
– Thermal Expansion Mismatch
– Thermal Resistance of Interface

• Experimental Procedure
– Active Metal Brazing
– Characterization (SEM, EDS)
– Hardness behavior

• Results and Discussion
• Concluding Remarks
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Materials for Thermal Management

- Conventional materials: Cu and Al (KCu = 400 W/m-K; KAl =205 W/m-K) 
- Cu is a better conductor than Al but heavier 

(ρCu=8,900 kg.m-3, ρAl=2,200 kg.m-3)
- Cu is less amenable to extrusion (shape limitations)
- Both Cu and Al have high CTE, and their use requires design 
compromises.

Innovative technologies are needed to seamlessly 
integrate these materials in systems.
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Three Generations of Thermal Management Materials

• First Generation: high K, low-CTE materials (Cu/W, Kovar, Cu-
W, Cu-clad-Invar and Cu-clad-Mo).      
(Density is compromised!)

• Second Generation: SiC/Al, E-glass fiber reinforced polymers, 
ceramic- and metal-particle filled polymers, C/Cu, SiC/Cu, C/Al, 
diamond/Cu, B/Al, BeO/Be

• Third Generation: C/C composites, C/SiC, porous ceramics, 
porous graphite, CNT, graphene…
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Carbon-Carbon Composites Provide Advantage and 
Excellent Benefits for Thermal Management

Thermal conductivity of C/C composites strongly depends on the 
fiber type, architecture, and composite processing technology   

Source: K. Kearns, Composites, ASM Handbook, 
Vol. 21 (2002) 1067-1070.

• High modulus, high conductivity pitch based carbon fibers can be used 
to improve the thermal properties of C-C composites.  

Source: Comprehensive Composite Materials, 
Vol. 4, 3 (2000).
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Copper-Clad Molybdenum as a Thermal 
Management Material
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(from Electronic Materials and Processes 
Handbook, C.A. Harper, McGraw-Hill, 2003)

• Copper has excellent thermal 
conductivity (K for OFHC Cu: 401 
W/m.K).

• CTE of Cu is high (16.5 ppm/K). 
Difficulty in joining to ceramic 
substrates.

• Low annealing temperature of Cu 
causes softening at moderate heat 
input.

• Cladding Mo with Cu lowers CTE 
and promotes thermoelastic
compatibility with ceramics.

• Some loss of thermal conductivity 
(Mo: 138 W/m.K, Cu: 401 W/m.K).

• Small weight penalty (density of 
Cu: 8,900 kg.m–3, density of Mo: 
10,280 kg.m–3).
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Objective

• Utilize active metal brazing to bond CVI and 
resin-dervied C-C composites to metals 
using active braze alloys.

• Characterize the joint microstructure, 
composition, and microhardness
distribution across the joint interface.

• Estimate the residual stress and effective 
thermal resistance in the joint.
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• Joining and integration is an enabling technology for the 
manufacturing and application of advanced composite 
components.

• Integration of C-C composite sub-elements to metals in 
components and systems requires the development and 
validation of innovative joining concepts and 
technologies. 

• Challenges:

- Poor wettability of ceramics and composites: poor 
flow and spreading characteristics.

- Thermoelastic incompatibility: large thermal 
expansion mismatch and residual stresses. 

Joining of C-C Composites to Metals
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Wettability is Important in Brazing!

Contact angle of braze should be small
Braze layer melts and spreads between 

the substrates to form the joint

Ordinary braze alloys wet the metal but not the ceramic!

Must use ‘active’ brazes that wet and bond with 
both metal and composites
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Relative spreading behavior of Cusil-ABA and Ticusil
on C-C (tendency to “ball-up” or “spread-out”)

Wt. of braze: 0.2 g, contact time: 5 min. 
T = 830ºC (Cusil-ABA), T = 915ºC (Ticusil)

Ticusil (4.5%Ti) exhibited better surface coverage than Cusil-ABA (1.75%Ti). 
Ti in Ag and Cu is known to decrease the θ (θ < 90°)
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Thermal Properties of Braze and Substrate Materials

A large CTE mismatch 
between C-C and 
metallic substrates 
raises residual stress. 
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Strain Energy in C-C/Ticusil/Cu-clad-Mo joint

CTE of Cu-clad Mo: ∼5.7x10-6/K, CTE of C-C: ∼2.0-4.0×10-6/K over 20-2500°C, CTE of Ticusil: ∼
18.5×10-6/K, EC = 70 GPa, EI = 85 GPa, ΔT = 887ºC, σYI = 292 MPa, m = 1, r ∼ 0.63 x 10-2 m
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UeC: strain energy
σYI: yield strength of the braze interlayer
R: radial distance from the center of the joint 
EC: elastic modulus of the ceramic  
EI: elastic modulus of braze 
ΔT: temperature change 
α: CTE of the subscripted phases (M, C, and I) 
m: exponent [m=1 for αI > (αM + αC)/2, and m=–1 for αI < (αM + αC)/2] 

Model Equations 
(J.-W. Park, P. F. Mendez and T. W. Eagar, Acta Mater., 2002, 50(5), 883-899)

Data for C-C/Ticusil/Cu-clad-Mo Joints
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• Relatively larger strain energy in C-C/Ticusil/Cu-clad-Mo than in C-C/Cusil-ABA/Cu-clad-Mo.

• Ductile braze and Cu cladding prevented failure.

(Based on a model due to J.-W. Park, P. F. Mendez and T. W. Eagar, Acta Mater., 2002, 50(5), 883-899)
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Thermal Conduction in Brazed Joint
Effective thermal resistance (1-D steady-state conduction)

Reff = Σ(Δxi/Ki)
(Reff: effective thermal resistance, Δxi: thickness Ki: thermal conductivity) 

• Reff of joints depends upon clad layer thickness. Reff is 31.5 to 
38.5×10-6 m2.K/W, intermediate between Reff of C-C (= 40.8×10-6 

m2.K/W) and Reff of Cu-clad-Mo (= 22.8×10-6 m2.K/W). 
• An increase in Reff of joints relative to Cu-clad-Mo is compensated 

by a decrease in weight.
• Even with the lower conductivity Cusil-ABA braze (K = 180 W/m-K), 

there will be less than 1% difference in Reff with respect to Ticusil. 
• Flexibility in selecting brazes to satisfy other criteria (e.g., ductility, 

wetting etc.).
• Potential benefit to join C-C to Cu-clad-Mo in thermal management 

systems. 
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Effective thermal resistance (1‐D steady‐state conduction)
Reff = Σ(Δxi/Ki)

(Reff: effective thermal resistance, Δxi: thickness Ki: thermal conductivity) 

Reff depends upon clad layer thickness. It decreases with increasing clad layer thickness.

Potential benefit to join C‐C to Cu‐clad‐Mo in thermal management systems.
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Experimental Procedure
- Materials -

• Carbon-Carbon composites 
– Goodrich Corp., Santa Fe, CA and C-CAT, Inc., Fort 

Worth, TX

• Cu-clad-Mo plates (Cu-Mo-Cu ratio: 13%-74%-13%) 
– H.C. Starck, Inc., Newton, MA

• C-SiC composites (CVI C-SiC) 
– GE Power Systems Composites, Newark, DE.

• Braze alloys (powders), Cusil-ABA and Ticusil
– Morgan Advanced Ceramics, Hayward, CA.
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• Substrates cut into 2.54 cm x 1.25 cm x 0.25 cm plates 
and ultrasonically cleaned. 

• 3D C-C sectioned along two orthogonal directions to 
expose fiber plies with different fiber arrangements to 
evaluate their effect on joining. 

• Assembly heated under vacuum (~10-6 torr) to 15-20 °C 
above braze TL. After 5 min. soak, slowly cooled to room 
temperature. 

• Brazed joints mounted in epoxy, ground, polished, and 
examined using optical microscopy and Field Emission 
Scanning Electron Microscopy (Hitachi 4700) coupled 
with EDS.

• Microhardness (Knoop indenter) on Struers Duramin-
A300 machine (200 g load, 10 s). Four-to-six scans 
across each joint.

Experimental Procedure
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Singh et al, Mater. Sci. Eng. A, 452-453, 2007, pp. 699-704
Singh et al, Mater. Sci. Eng. A 498, 2008, 31-36

Singh and Asthana, Composites Sci. & Tech. (in the press); 
Singh et al, Mater. Sci. Eng. A, 412, 2005, 123-128; 

Morscher et al, Mater. Sci. Eng. A, 418(1-2), 2006, pp 19-24.
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Examples of Brazed Joints of C-C Composite

C-C/Cusin/Ti C-C/Cusil-ABA/PocoC-C/Cusil-ABA/Poco

Joining of C-C to Ti, Cu-clad-Mo and Ni-base superalloys
using a wide variety of braze alloys was demonstrated
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Composite Metallic Substrate Braze Bonding
C-C1,6 Ti Silcoro-758, Palcusil-158, 

Cusil
Weak 

C-C2 Ti Ticuni, Cu-ABA, Ticusil Good

C-C1,6 Ti and Hastealloy MBF-208, MBF-308 Good (Ti), Fair 
(Hastealloy)

C-C3,4,5 Ti, Cu-clad Mo9, Inconel 625 Ticusil7 Good4, Fair5

C-C3,4,5 Cu-clad Mo9 Cusil-ABA7 Good

C-C3,4,5 Ti and Inconel 625 Cusil-ABA7 Good

1Polished; 2Not-polished; 33-D composite; 4Oriented fiber at the joint (3-D 
composite); 5Non-oriented side at the joint; 6T-300 C fibers in resin-derived 

C matrix; 7Braze paste; 8Braze foil; 9H.C. Starck, Inc., MA. 

Braze Effectiveness in Joining C-C to Metals
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Mechanical Behavior of Brazed C-C plate/Ti-tube Joints

Joint strength
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Tensile failure loads

Fracture surface of joints 
(fiber tows in surface ply were perpendicular to tube axis)

Dotted lines show bonded area

Fracture always occurred within surface ply and not within 
braze (good chemical bonding)
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Rigid block

 

Failure Behavior of Ti-Tube/Poco/P120 C-C Joint 

Fracture always occurred within Poco foam!

Light-weight space radiator sub-element 
(C-C/Poco/Ti tube)

Lowest 
contact area, 

highest 
stress on 

joint

Highest contact area, lowest 
stress on joint
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C-C Composite/Cu-Clad-Mo Joints
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Microstructure of C-C/Cusil-ABA/Cu-clad-Mo Joints

• Braze penetration to several hundred micrometers in 5 min.
• No effect of fiber ply orientation on infiltration. 
• Improved wetting by Ti in braze facilitated infiltration. 
• No reaction choking and flow cessation from carbide forming reactions.

CuSil-ABA
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Microstructure of C-C (oriented fibers) composite 
/Cusil-ABA/ Cu-clad-Mo joint 

• High concentrations of Ti at the C-C/Cusil-ABA interface. 
• Two-phase eutectic structure of braze (Ag-rich light-grey areas and Cu-rich 

dark areas). 
• No melting and solidification of clad layer [M.P. of Cu (1086ºC) > joining 

temperature].
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Microstructure of C-C (non-oriented fibers) 
composite/Cusil-ABA/Cu-clad-Mo joint 

• Evidence of Ti segregation on C surface. 
• Possible formation of titanium carbide via Ti+C TiC (ΔG = -171.18 kJ 

at 850°C). 
• Wettable sub-stoichiometric carbides (TiC0.95, TiC0.91, TiC0.80, TiC0.70, 

TiC0.60 and TiC0.48) may form. 

3D C-C Cusil -ABA Cu-clad-Mo

Mo

Cu C (Ag,Cu,Ti,Mo)

C-Ti -Cu (Mo,Ag) Cu -Ag-Ti (Mo)

Ag-Cu (Mo,Ti)

10 ?m

+1

Mo-Cu-Ag (Ti)Cu-Ag-Ti-Mo

Mo-Cu (Ag,Ti)
Ag-Cu (Ti,Mo)

Cu-Ag (Mo, Ti)

Cu-Ag (Mo,Ti)

Cu-Mo-Ti (Ag) 10 ?m
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Microstructure of C-C (non-oriented fibers) 
composite/Ticusil/Cu-clad-Mo joint

• Some dissolution of carbon in braze (possibly due to higher temperature 
of Ticusil).

• Carbon also detected within the Cu-clad-Mo region. 

Cu-clad-Mo

Ticusil

C-C

Cu-Ti-Ag (C)

Ag-Cu (C,Ti)

Carbon (Cu,Ti)

Ag-Cu (C,Ti,Mo)

10 ?m
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Ag-Cu-C (Ti,Mo)

+1
+2

+3

+4

+5

+6

10 ?m

28

National Aeronautics and Space Administration

www.nasa.gov

Ticusil Cu-clad-Mo C-C 

6(a)  
Cu-Ag-Ti 

C (Ag,Mo,Ti) 

C-Cu (Mo,Ag,Ti) 

Ag-Cu (C) 

6(b) 

13 μm 

 

Mo-C-Cu (Ti,Ag)

Ag-Cu (C, Mo)

Cu-Ag-Ti (C, Mo) 

6(c) 

13 μm 

+2 +4 

Microstructure of C-C (resin-derived) 
composite/Ticusil/Cu-clad-Mo joint 

• Cracking within resin-derived C-C composite (low interlaminar shear strength).

• Braze displays characteristic two-phase eutectic structure with Ag- and Cu-rich phases. 

• Preferential precipitation of Ag-rich phase onto both C-C surface and Cu-clad-Mo surface

• A small amount of Cu detected within the C-C composite.
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Knoop Hardness of C-C Composite/Cu-Clad-Mo Brazed Joints 

• No effect of fiber ply orientation

• No effect of composite type (CVI vs resin-derived) on HK within the braze region. 

• HK of Mo substrate is ~200-330.

• HK depends on braze type: Ticusil exhibits slightly higher HK (~85-200) than 
Cusil-ABA (~50-150).
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Concluding Remarks

• Active metal brazing can be successfully utilized for the 
integration of carbon-carbon composites to metallic 
systems. 

• However, significant efforts are needed in developing 
joint design methodologies, understanding the size 
effects, and thermomechanical performance of integrated 
systems in service environments.

• Global efforts on standardization of integrated 
component testing are required. In addition, development 
of life prediction models for integrated components is 
also needed.


