“Multidisciplinary Analysis & Optimization Generation 1 and Next Steps”

Presented at the NASA Fundamental Aeronautics Program 2nd Annual Meeting
Atlanta, GA, October 2008

The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program’s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: “Requirements Definition” Milestone (1/31/08); “GEN 1 Integrated Multi-disciplinary Toolset” (Annual Performance Goal) (6/30/08); and “Define Architecture & Interfaces for Next Generation Open Source MDAO Framework” Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.
Multidisciplinary Analysis & Optimization Generation 1 and Next Steps

Cynthia Gutierrez Naiman
Subsonic Fixed Wing Project
Fundamental Aeronautics Program
2nd Annual Meeting
Atlanta, GA
October 7-9, 2008
SFW System Level Metrics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>- 32 dB (cum below Stage 4)</td>
<td>- 42 dB (cum below Stage 4)</td>
<td>55 LDN (dB) at average airport boundary</td>
</tr>
<tr>
<td>LTO NOx Emissions (below CAEP 6)</td>
<td>-60%</td>
<td>-75%</td>
<td>better than -75%</td>
</tr>
<tr>
<td>Performance: Aircraft Fuel Burn</td>
<td>-33%**</td>
<td>-40%**</td>
<td>better than -70%</td>
</tr>
<tr>
<td>Performance: Field Length</td>
<td>-33%</td>
<td>-50%</td>
<td>exploit metro-plex* concepts</td>
</tr>
</tbody>
</table>

** An additional reduction of 10 percent may be possible through improved operational capability
* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas
EIS = Entry Into Service; IOC = Initial Operating Capability

N+1 Conventional
![N+1 Conventional](image1.png)

N+2 Hybrid Wing/Body
![N+2 Hybrid Wing/Body](image2.png)

N+3 Generation
![N+3 Generation](image3.png)
• Background
• Organization
• Milestones
• Major Accomplishments
• Status & Plans
• Conclusion
Physics Based MDAO

- **National Need: Environment & Economy**
 - Unconventional configurations are essential to further reduce noise and emissions, while increasing performance.
 - PB MDAO is critical in designing & optimizing unconventional vehicles.
 - Industry needs advances in PB MDAO tools to design revolutionary vehicles in a cost-effective way.

- **Benefits include**
 - Enabling of unconventional design
 - Increased confidence in designs
 - Reduced technical risk, time to market, & cost

- **Gaps include**
 - Highly customized (and proprietary) to specific configurations and analysis processes
 - Configuration change necessitates rework
 - Lack of integrated variable fidelity capability
MDAO Working Group Organization

Fundamental Aeronautics Program Office
Director: Juan Alonso

Subsonic Fixed Wing Project
Principal Investigator: Fay Collier
Project Scientist: Richard Wahls, Project Manager: Ruben Del Rosario, Tech Integrator: Anna McGowan
Acoustics API: Russell Thomas, Combustion API: Dan Bulzan
Aerodynamics API: Mike Rogers, Controls & Dynamics API: Diana Acosta
Aeroelasticity API: Jennifer Heeg, Materials & Structures API: Karen Taminger
Aerothermodynamics API: Jim Heidmann, SAD&O API: Bill Haller

MDAO Working Group

Level 3 Lead
Steve Smith

Software Development Lead
Cynthia Naiman

Level 4 Lead
Craig Nickol

GEN1 Validation Subteam
Lead: Haller

GEN2 HWB Subteam
Lead: Nickol

OpenMDAO Subteam
Lead: Naiman

Discipline, Systems, & MAO Experts

Computer Scientists

Support

Acoustics
Aerothermodynamics
Aerodynamics
Combustion
Aeroelasticity
Materials & Structures

Software Testing
Software Configuration Management
Technical Writing
System Administration

MDAO Integrated Discipline Group
Lead: Dean Kontinos

SAD&O TWG
MDAO Milestones

<table>
<thead>
<tr>
<th>Title</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Requirements for Integrated Design/Analysis Environment</td>
<td>1/2008</td>
</tr>
</tbody>
</table>

Requirements defined applicable to all milestones
MDAO Milestones

<table>
<thead>
<tr>
<th>Title</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Requirements for Integrated Design/Analysis Environment</td>
<td>1/2008</td>
</tr>
<tr>
<td>Complete GEN 1 Integrated Multi-disciplinary Toolset</td>
<td>6/2008</td>
</tr>
<tr>
<td>GEN 1 Validation of Integrated Tool Set w/Experimental Data</td>
<td>12/2008</td>
</tr>
</tbody>
</table>

- **Requirements defined applicable to all milestones**
- **GEN1 milestones**
MDAO Milestones

<table>
<thead>
<tr>
<th>Title</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Requirements for Integrated Design/Analysis Environment</td>
<td>1/2008</td>
</tr>
<tr>
<td>Complete GEN 1 Integrated Multi-disciplinary Toolset</td>
<td>6/2008</td>
</tr>
<tr>
<td>GEN 1 Validation of Integrated Tool Set w/Experimental Data</td>
<td>12/2008</td>
</tr>
<tr>
<td>Complete GEN 2 Integrated Multi-disciplinary Toolset</td>
<td>6/2010</td>
</tr>
<tr>
<td>GEN 2 Validation of Integrated Tool Set w/Experimental Data</td>
<td>12/2010</td>
</tr>
</tbody>
</table>

- **Requirements defined applicable to all milestones**
- **GEN1 milestones**
- **GEN2 milestones**
MDAO Milestones

<table>
<thead>
<tr>
<th>Title</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define Requirements for Integrated Design/Analysis Environment</td>
<td>1/2008</td>
</tr>
<tr>
<td>Complete GEN 1 Integrated Multi-disciplinary Toolset</td>
<td>6/2008</td>
</tr>
<tr>
<td>Define Architecture & Interfaces for Next Generation Open Source MDAO Framework</td>
<td>9/2008</td>
</tr>
<tr>
<td>GEN 1 Validation of Integrated Tool Set w/Experimental Data</td>
<td>12/2008</td>
</tr>
<tr>
<td>Complete GEN 2 Integrated Multi-disciplinary Toolset</td>
<td>6/2010</td>
</tr>
<tr>
<td>Complete Alpha Release of Next Generation Open Source MDAO Framework</td>
<td>9/2010</td>
</tr>
<tr>
<td>GEN 2 Validation of Integrated Tool Set w/Experimental Data</td>
<td>12/2010</td>
</tr>
<tr>
<td>Demonstrate Next Generation Open Source MDAO Framework</td>
<td>9/2012</td>
</tr>
</tbody>
</table>

- **Red**: Requirements defined applicable to all milestones
- **GEN1 milestones**: GEN1 milestones
- **GEN2 milestones**: GEN2 milestones
- **Open Source milestones**: Open Source milestones
FY08 Major Accomplishments

- Met “Requirements Definition” Milestone (1/31/08)
 - Completed:
 - Vision & Scope Document
 - Use Case Document
 - **Software Requirements Specification (424 functional & 23 non-functional)**
 - Glossary
 - Requirements Prioritization

- GEN1
 - Met “GEN 1 Integrated Multi-disciplinary Toolset” (Annual Performance Goal) (6/30/08)
 - Completed Improvements to Codes & Integration Techniques: stability and control, noise, medium-fidelity aero prediction, high-lift aero prediction, and aircraft synthesis
 - Completed **GEN 1 Integrated Multi-disciplinary Toolset SFW.01.01.009 Milestone Report** (6/30/08)
 - Hosted GEN1 Review Day (7/29/08)
 - Defined validation plan (conventional configuration)

- GEN2
 - Defined validation plan (conventional & unconventional configurations)

- OpenMDAO
 - Met “Define Architecture & Interfaces for Next Generation Open Source MDAO Framework” Milestone (9/30/08)
 - Completed **Next Generation Open Source MDAO Framework Architecture Document (9/30/08)**
Near Term Path:
Continue to use & improve currently available frameworks to meet near-term milestones (GEN2)

Far Term Path:
Develop open source framework as start of long-term solution (Alpha)

GEN 1 Toolset Development

MDAO Requirements Definition

Far Term Path:
Next Generation Open Source MDAO Framework (OpenMDAO)
Why Open Source? Components & Collaboration

A framework is only as good as its components

- Open source → more users
- More users → more component developers
- More component developers → more components
- More components → more functionality for users

- We can maximize the number of available components by making it easy to package a component and publish it on the web

- Easier collaboration
 - No need to pay a price per seat to purchase the framework
 - Minimal red tape; just download it, install it, and go

- Transparency -- Source code can be viewed by users
 - Researchers can see the algorithms
 - Many eyes find many bugs
Government Interest In Open Source Distribution

- **NASA** *(Outreach, Tech Transfer, Contributions back to NASA)*
 - NASA’s Motivation for Open Source software distribution:
 - To increase NASA software quality via community peer review
 - To accelerate software development via community contributions
 - To maximize the awareness and impact of NASA research
 - To increase dissemination of NASA software in support of NASA's education mission
 - “Developing An Open Source Option for NASA Software” by Moran, TR NAS-03-009
 - NASA Open Source Agreement (NOSA)

- **DoD**
• GEN1
 – Prepare model to validate GEN1 (due 12/08)

• GEN2
 – Identify specific codes & integration improvements needed for HWB configuration

• OpenMDAO: OS framework does not require that components be OS
 – Pursue potential collaboration in OS MDAO community
 – Identify & define verification/validation test cases
 – Continue prototyping using python
 – Set up development environment & begin implementation
 – Follow process to classify framework as open source & publicly available
 – Follow up with industry, academia, & other government agencies

• Leverage NRA & SBIR MDAO efforts
Conclusion

• Completed 3 major milestones in FY08

• On schedule to meet future milestones

• 2-Path approach benefits near- and long-term needs

• Partnering with industry, academia, and other government agencies is essential to realize MDAO vision
Data on Requirements Development

Requirements Inspections

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of Reqs inspected</td>
<td>52</td>
<td>48</td>
<td>49</td>
<td>35</td>
<td>85</td>
<td>68</td>
<td>54</td>
<td>41</td>
<td>42</td>
<td>41</td>
<td>29</td>
<td>544</td>
</tr>
<tr>
<td># of Defects Found</td>
<td>85</td>
<td>52</td>
<td>46</td>
<td>24</td>
<td>43</td>
<td>128</td>
<td>70</td>
<td>67</td>
<td>56</td>
<td>87</td>
<td>58</td>
<td>716</td>
</tr>
<tr>
<td># of people</td>
<td></td>
</tr>
<tr>
<td>attending inspections*</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>n/a</td>
</tr>
<tr>
<td>Hours in inspection</td>
<td></td>
</tr>
<tr>
<td>meeting**</td>
<td>2.5</td>
<td>2.25</td>
<td>1.25</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>2.25</td>
<td>2</td>
<td>3</td>
<td>2.75</td>
<td>2.25</td>
<td>30.25</td>
</tr>
<tr>
<td>eRoom discussion</td>
<td></td>
</tr>
<tr>
<td>forums***</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>41</td>
</tr>
</tbody>
</table>

Fundamental Aeronautics Program
Subsonic Fixed Wing Project
Priorities for Functional Requirements

MDAO Framework Requirements

<table>
<thead>
<tr>
<th>Category</th>
<th>Mandatory</th>
<th>High</th>
<th>Special Med.</th>
<th>Med</th>
<th>Low</th>
<th>Cat. Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Management</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>External Interface</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Sim Configuration</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Sim Data</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Sim Execution</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>System Operations</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Tool Coupling</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Tool Wrapping</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>User Interface</td>
<td>13</td>
<td>21</td>
<td>7</td>
<td>14</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Totals</td>
<td>40</td>
<td>65</td>
<td>16</td>
<td>36</td>
<td>15</td>
<td>172</td>
</tr>
</tbody>
</table>

MDAO Non-Framework Requirements

<table>
<thead>
<tr>
<th>Category</th>
<th>Mandatory</th>
<th>High</th>
<th>Special Med.</th>
<th>Med</th>
<th>Low</th>
<th>Cat. Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics</td>
<td>13</td>
<td>24</td>
<td>14</td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>Aerodynamics</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Approximation</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Design</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Emissions</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Geometry</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>Mission Perf</td>
<td>25</td>
<td>12</td>
<td>7</td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Optimization</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Propulsion</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>Stability & Control</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Structural Analysis</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Take-off & Landing</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Totals</td>
<td>78</td>
<td>114</td>
<td>2</td>
<td>56</td>
<td>2</td>
<td>252</td>
</tr>
</tbody>
</table>
GEN 1 MDAO Framework Schematic

- Dark blue boxes indicate new capabilities over the GEN 0 Framework
- Red outline boxes identify tools discussed in further detail in GEN1 Milestone Report
- Solid arrows – integrated Dashed arrows – not integrated yet
OpenMDAO Architecture Document

- Top level context diagram
- Class diagram of most important classes, followed by descriptions of each class
- Sequence diagrams covering important areas, such as component execution and component creation
- A list of interfaces for system plug-ins (IComponent, IDriver, ICaselteerator, IResourceAllocator,...)
- Important design decisions and reasoning behind them
- Deployment diagram for component publishing/downloading via egg servers
- Deployment diagram for a distributed model execution