Reconfigurable Flight Control Design using a Robust Servo
LQR and Radial Basis Function Neural Networks

John J. Burken NASA Dryden Flight Research Center

IJCNN 2005
International Joint Conference on Neural Networks
July 31 – August 5, 2005

ICCNN, Montreal Canada
August 2005
Reconfiguration

Presentation Outline

- Purpose
- Background
- Design Methods Used for Paper
 - Background on Model Reference Adaptive Control (MRAC)
 - Background on Robust Servomechanism LQR
 - Radial Basis Function Neural Networks
- Control Failure Survivability Results
- Results / Time Histories
- Conclusions
 - Remarks
 - Lessons Learned
Control Reconfiguration

General Background / Concepts

- Purpose of Reconfigurable Control / Why?
 - Handle Failures & Land Safely
 - Continue on with Mission
 - Buy More Time to Terminate Flight at a Better Location (UAV)

- Overall Controller Objective.
 - Maintain consistent stable performance in the presence uncertainties and unmodeled dynamics.
General Background / Concepts

- **Why Adaptive Control.**
 - Handles Uncertainties and unpredicted parameter deviations.
 - Adaptive control is better than Robust Control w.r.t. slow varying parameters.

- **Why Robust Control (Such as Robust LQR servo design)**
 - Handles fast varying parameters and unmodeled dynamics.
 - Has good flight experience.

- **Solution to Adaptive & Robust control issues.**
 - Merge Adaptive augmentation into a Robust Baseline Controller.
Reconfiguration Flight Control Systems

Motivation / Problem Statement {The Big Picture}
- Land a damaged airplane or, return to a safe ejection site.
- Or continue with mission

General Goals & Objectives
- Flight evaluation of neural net software.
- Increased survivability in the presence of failures or aircraft damage.
 - Increase your boundary of a flyable airplane.
 - Increase your chances to see another day.
 - Increase your chances to continue the mission.
Motivation, cont

- Airplanes in the Past Have Landed with Major Failures.
- But possibly not as many safe landings as could have, with adaptive control methods.
- Our Goal is to Increase the Survivability Region for the Pilot without luck or high skill levels or when the pilot is injured.
How do we Reconfigure the Controller (called H or K)

Many ways to adapt to a failure or unknown Plant (G) parameters:
 → Adaptation Methods:
 → Non-Learning Methods:
 → Robust Reconfiguration Methods.
 → Fault detection & isolation.
 → Use of smart actuators (Handles only B matrix failures).
 → Reconfigurable Retrofit Architecture methods.
 → Learning Methods:
 → Use of Neural networks
 → Too many to list (such as RBF Radial Basis Function)
General Statements on Adaptive Controller

- Two Types of Adaptive controllers
 1. Direct Adaptive
 2. Indirect Adaptive

- The Direct Adaptive Controller Works on the Errors.
 - Needs a Reference Model to Generate $P_{err} = (P_{cmd} - P_{sensor})$
 - The Neural Network “Directly” Adapts to P_{err}.
 - Does not need to know the source of error.
 - No Aero Parameter Estimation Needed
 - No need for persistently exciting signals

- The Indirect Adaptive Works on Identifying the source of Error.
 - Does Not Need a Reference Model.
 - Needs to Identify the Aerodynamics that have changed! (PID)
 - PID is Time Consuming and may not be correct.
 - Needs persistently exciting inputs.
Model Reference Adaptive Control (MRAC)

- **Plant**: Actual Plant parameters (G) are unknown.
- **Reference Model**: Ideal response (y_m) to cmd r (Use a Stable Reference Model).
- **Adaptation Law**: Is used to adjust controller (H): can be NNs.

![Diagram of MRAC system]

- Reference Model: Closed Loop Sys
- Controller (H)
- Plant (G)
- Adaptive Law (NN)
- r +
- u
- y
- y_m
- error
- Θ
Servomechanism Design Methodology

Consider a MIMO system
\[\dot{X} = Ax + Bu + Ew \quad \text{where} \ x \in \mathbb{R}^n, \ u \in \mathbb{R}^m, \ y \in \mathbb{R}^p \]
\[Y = Cx + Du + Fw \]
\[w = \text{the disturbance (failed surface)} \]
The dynamic controller is
\[\dot{x}_c = A_c x_c + B_c (r - y) \]
The open loop augmented system is
\[
\begin{bmatrix}
\dot{x} \\
\dot{x}_c
\end{bmatrix} =
\begin{bmatrix}
A & 0 \\
-B_c C & A_c
\end{bmatrix}
\begin{bmatrix}
x \\
x_c
\end{bmatrix} +
\begin{bmatrix}
B \\
-B_c D
\end{bmatrix} U
\]
Suppose the following condition is satisfied
\[\text{rank} \begin{bmatrix}
\dot{e} & I - A \\
-C & D
\end{bmatrix} = n + p \]
The system is controllable and there exist a control law
\[u = kx + k_c x_c \]

Note:
① LQR Servo = LQR PI
② Jammed or failed surface is treated as a disturbance to the system.
③ Approach is simple to implement.

If this statement is true there exist a closed-loop system that is stable.
Remarks:
- For any such control law, asymptotic tracking and disturbance rejection are achieved; that is, the error goes to zero.
- If the augmented system is controllable, the control law can be conveniently found by applying the linear quadratic regulator (LQR) approach to the augmented system.
- After setting up the augmentation we now need to solve for the gain \((k, k_c)\)
 - Just use LQR.
 - This setup allows for a LQR tracker solution.

Control Law

\[
u = kx + k_c x_c
\]

\[
e = r - y \rightarrow 0
\]

The augmented system is

\[
\begin{bmatrix}
\dot{x} \\
\dot{x}_c
\end{bmatrix} = \begin{bmatrix}
A & 0 \\
-B_c C & A_c
\end{bmatrix} \begin{bmatrix}
x \\
x_c
\end{bmatrix} + \begin{bmatrix}
B \\
-B_c D
\end{bmatrix} U
\]
Servomechanism Design Methodology (cont.)

- Optimize the following cost function.
 Optimal linear-quadratic-regulator (LQR) problem.

\[J = \int_0^T (x'Qx + u'Ru)dt \]

- The algebraic Riccati equation

\[0 = A'P + PA + Q - PBR^{-1}B'P \]

- And the optimal control is given by:

\[u(t) = -R^{-1}B'Px(t) = Kx(t) \]
Why Neural Networks?

- Neural Networks are Universal Approximators.
- Minimizes a H^2 norm.
- They permit a nonlinear parameterization of uncertainty.
- Why Radial Basis Functions (RBF):
 - RBFs will de-activate when signal is outside “neighborhood”.

Activation function

$$\phi(x) = e^{-\frac{||x - r||^2}{2\sigma}}$$
The output of a RBF network with K neurons:

- $\phi_k(x)$ is the response of the kth hidden neuron for input vector x.
- w_k is the connecting weight of the output neuron.

$$f(x) = NN(x) = \sum_{k=1}^{K} w_k \phi_k(x) + b$$
Neurons
1 Hidden layer with 4 Neurons and 2 Inputs

\[f_j = w_0 b + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_1 x_2 \]

\(\phi \) means activation function
2 groups of failures are “common” among aircraft mishaps/crashes.

• Aerodynamic Failures or uncertainties (A Matrix problems / lost aero surfaces, bent wings)
 • Or Not well known aero terms due to modelling errors.

• Control Failures (B Matrix problems / jammed control surfaces)
 • Right stab jammed at 8. deg from trim
Control Reconfiguration Results

- Time History of Surface Failure (B matrix)
 - Failure = Right Stabilator Jammed.
 - At time = 10 seconds / 8 deg from trim.
 - At time = 30 seconds Failure goes away (crew fixed the failure).

- Neural Networks
 - Neural Networks turned off for the first run.
 - Neural Networks turned on for second run.
 - Without Dead Zones.
Robust Model Reference Adaptive Control Design

F-18 LQR-Tracker (Robust Servo LQR) Model Reference Adaptive Control System Design

March 01, 2005

Reference Model

Pilot_inputs

Clock

NN

Neural Networks
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets
Control Reconfiguration Results

- Time History of Surface Failure (B matrix)
- Failure = Right Stabilator Jammed.
 - At time = 10 seconds / 8 deg from trim.
 - At time = 30 seconds Failure goes away (crew fixed the failure).
- Neural Networks
 - Neural Networks turned off for the first run.
 - Neural Networks turned on for second run.
 - With Dead Zones & 20% decrease in learning rates.
Pilot Inputs

Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets

NN with Dead-Zones & Slower Learning
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets

NN with Dead-Zones & Slower Learning
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets

NN with Dead-Zones & Slower Learning
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets

Neural Network Signals

NN with Dead-Zones & Slower Learning
Failure = Right Stab 8. deg at 10 seconds with & without NN
Failure goes away at 30 seconds / Pilot Input is Roll doublets

NN with Dead-Zones & Slower Learning
Conclusions & Remarks

Method presented:
- Robust LQR Servomechanism design with Model Reference Adaptive Control
 - Reference Model was a “health” aircraft.
- Used Radial Basis Function Neural Networks

Results:
- LQR Servomechanism behaved well with a failure.
- Using the Neural Networks improved the tracking compared to not using the neural networks.

Lesson learned:
- Test the removal of the failure with Neural Networks active to ensure good performance.
 - The crew could fix the problems and you don’t want the adaptive system to go unstable.
Appreciations / Thanks

- Eugene Lavretsky, Ph.D Boeing
- Ping Lu, Iowa State University